带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(5)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 带你读《企业级云原生白皮书项目实战》——5.3.2 Flink任务开发相关(5)

《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(4): https://developer.aliyun.com/article/1228382?groupCode=supportservice


在这种情况下,推荐的方法是通过maven1shade插件的ServicesResourceTransformer转换META-INF/services目录下的这些资源文件。给定示例的pom.xml文件内容如下,其中包含连接器flflink-sql-connector-hive-3.1.2和flflink-parquet format。

<modelVersion>4.0.0</modelVersion>
 <groupId>org.example</groupId>
 <artifactId>myProject</artifactId>
 <version>1.0-SNAPSHOT</version>
<dependencies>
 <!-- other project dependencies ...-->
 <dependency>
 <groupId>org.apache.flflink</groupId>
 <artifactId>flflink-sql-connector-hive-3.1.2__2.11</artifactId>
 <version>1.13.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.flflink</groupId>
 <artifactId>flflink-parquet__2.11<</artifactId>
 <version>1.13.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <executions>
 <execution>
 <id>shade</id>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <confifiguration>
 <transformers combine.children="append">
 <!-- The service transformer is needed to merge META-INF/services fifiles -->
 <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
 <!-- ... -->
 </transformers>
 </confifiguration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

在配置了ServicesResourceTransformer之后, 项目构建uber-jar时,META-INF/services目录下的这些资源文件会被整合在一起而不是相互覆盖。

Maven作业模版

强烈建议使用该方式进行配置,可以减少很多重复的配置工作。

前置要求

唯一的环境要求是安装了Maven 3.0.4(或更高版本)和Java 8.x。

创建项目

使用以下两种方式中的一种创建项目:

•使用Maven archetypes

$ mvn archetype:generate \
 -DarchetypeGroupId=org.apache.flflink \
 -DarchetypeArtifactId=flflink-quickstart-java \
 -DarchetypeVersion=1.12.3

这允许您命名新创建的项目。它将以交互方式要求您输入groupId、artifactId和包名。

•运行quickstart脚本

$ curl https://flflink.apache.org/q/quickstart.sh | bash -s 1.12.3


《企业级云原生白皮书项目实战》——第五章 大数据——5.3 实时计算Flink版——5.3.2 Flink任务开发相关(6) https://developer.aliyun.com/article/1228378?groupCode=supportservice

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
5天前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
29 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1551 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
6天前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
120 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
5月前
|
Cloud Native 安全 大数据
云原生与大数据
【8月更文挑战第27天】云原生与大数据
77 5
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
188 56
|
20天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
17天前
|
编解码 弹性计算 大数据
软硬结合助力倚天云原生算力再进化,加速大数据、视频转码上云步伐
本文介绍了云原生算力的进化,重点讨论了倚天710 CPU在大数据和视频转码场景中的应用与优势。倚天710采用ARM架构,通过物理核设计和CIPU加速卡优化,显著提升了高负载下的性能稳定性,并在实际应用中帮助客户实现了20%-40%的性能提升和成本降低。此外,文章还探讨了操作系统、编译器等底层软件的优化,以及如何通过龙蜥社区和阿里云平台支持更多应用场景,助力企业实现高效迁移和性能优化。
|
2月前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
191 2
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。

热门文章

最新文章