《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)

简介: 《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)

《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(1) https://developer.aliyun.com/article/1228280



平台建设

image.png

1. 预算资源管控和Flink自动伸缩容  


为了提高资源利用率,汽车之家做的第一步就是启用预算的强控机制,与内部的资产云系统做对接并确定团队的可用预算,超出预算后任务将无法启动。同时对此定义了规范,用户需要先优化团队内的低利用率任务来释放预算,原则上资源利用率低的任务数应该控制在 10% 以内。如果无法优化,可以在资产云系统上发起团队间预算调拨的流程,也就是借资源;如果还是失败,则会由平台开白名单临时支持业务。


image.png

平台还上线了Flink任务健康评分机制,针对 CPU 使用率、内存使用率和空闲 slot 这几个核心规则来识别低利用率任务,同时会展示出低利用率的原因及解决方案。


image.png


此外,汽车之家通过开发Flink作业自动伸缩容功能来降低用户的调优成本。用户可以指定自动伸缩容的触发时间,比如可以指定在夜里低峰时期执行,降低伸缩容对业务的影响,支持指定 CPU 并行度、内存维度伸缩容的策略,每次执行伸缩容都会通过钉钉和邮件通知任务负责人,并且会记录伸缩容的触发原因和伸缩容之后的最新资源配置。


image.png


总结起来,汽车之家通过引入强控流程来严控计算资源的用量,通过制定规范来提升用户主动优化资源的意识,通过开发自动伸缩容功能降低用户的调优成本。最终达到的收益是在实时计算业务稳步增长的前提下全年没有新增服务器。  



在流批一体方面,汽车之家准备利用 Flink 的批处理能力小范围做批处理的应用和 web 场景的试水。同时在数据湖架构的基础上,继续探索存储层面批流一体的可能性。最近汽车之家也在关注 FLIP-188 提案,它提出了一个全新的思路,将流表和批处理表进行一定程度的统一,可以实现一次 insert 就把数据同时写入到 Logstore 和 Filestore 中,让下游可以实时消费 Logstore 的数据做实时 Pipeline,也可以使用 Filestore 的批式数据做 ad_hoc 查询。后续团队希望也能做类似的尝试。



《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3) https://developer.aliyun.com/article/1228278

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
328 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
3月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
404 4
|
4月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
331 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
6月前
|
SQL 存储 缓存
基于 StarRocks + Iceberg,TRM Labs 构建 PB 级数据分析平台实践
从 BigQuery 到开放数据湖,区块链情报公司 TRM Labs 的数据平台演进实践
|
9月前
|
存储 安全 数据挖掘
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
558 2
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
|
9月前
|
存储 分布式数据库 Apache
小米基于 Apache Paimon 的流式湖仓实践
小米基于 Apache Paimon 的流式湖仓实践
259 0
小米基于 Apache Paimon 的流式湖仓实践
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
862 4
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
258 2
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
361 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
1180 4
数据分析的 10 个最佳 Python 库

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多