《边缘云技术演进与发展白皮书》——五、边缘云分布式云管系统技术演进——01 分布式云管架构演进——2.云管第二阶段:融合管控

简介: 《边缘云技术演进与发展白皮书》——五、边缘云分布式云管系统技术演进——01 分布式云管架构演进——2.云管第二阶段:融合管控

云管第二阶段:融合管控

随着业务场景愈发复杂,第二阶段的云管平台在资源形态、硬件类型、产品形态等方面都有了极

大的改变,边缘侧管控模型更加复杂,架构也进行了优化升级。

在中心管控,为了应对日益复杂化的硬件类型的统一管理,增加了装配管控服务实现对各种类型

的硬件资源自动化纳管到库存系统,并在库存调度中增加了对融合资源的数据模型支撑,具备对

融合产品形态的逻辑抽象能力,相比于第一阶段,中心管控增加如下服务模块:

装配管控

融合资源的自动化安装、配置初始化服务

在边缘管控,服务架构进行了升级,分模块协同完成管控工作首先,统一一个入口对接中心管

控;其次,针对计算、存储、网络分别设计了各自的管控服务,同时,在计算、存储、网络各自

的管控服务中,可以针对融合的资源形态,向上提供统一的管控模型。第二阶段边缘管控主要具

备以下功能:

image.png

image.png图9 融合管控架构

相关文章
|
7月前
|
Kubernetes 大数据 调度
Airflow vs Argo Workflows:分布式任务调度系统的“华山论剑”
本文对比了Apache Airflow与Argo Workflows两大分布式任务调度系统。两者均支持复杂的DAG任务编排、社区支持及任务调度功能,且具备优秀的用户界面。Airflow以Python为核心语言,适合数据科学家使用,拥有丰富的Operator库和云服务集成能力;而Argo Workflows基于Kubernetes设计,支持YAML和Python双语定义工作流,具备轻量化、高性能并发调度的优势,并通过Kubernetes的RBAC机制实现多用户隔离。在大数据和AI场景中,Airflow擅长结合云厂商服务,Argo则更适配Kubernetes生态下的深度集成。
897 34
|
3月前
|
存储 算法 安全
“卧槽,系统又崩了!”——别慌,这也许是你看过最通俗易懂的分布式入门
本文深入解析分布式系统核心机制:数据分片与冗余副本实现扩展与高可用,租约、多数派及Gossip协议保障一致性与容错。探讨节点故障、网络延迟等挑战,揭示CFT/BFT容错原理,剖析规模与性能关系,为构建可靠分布式系统提供理论支撑。
233 2
|
3月前
|
机器学习/深度学习 算法 安全
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
146 3
|
5月前
|
数据采集 缓存 NoSQL
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
192 1
分布式新闻数据采集系统的同步效率优化实战
|
5月前
|
人工智能 监控 API
MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
本文产品专家三桥君探讨了以 MCP 为核心的 AI 应用架构设计,从统一接入、数据管理、服务编排到部署策略等维度,系统化分析了 AI 落地的关键环节。重点介绍了 API 网关的多终端适配、数据异步处理流程、LLM 服务的灰度发布与 Fallback 机制,以及 MCP Server 作为核心枢纽的调度功能。同时对比了公有云 API、私有化 GPU 和无服务器部署的适用场景,强调通过全链路监控与智能告警保障系统稳定性。该架构为企业高效整合 AI 能力提供了实践路径,平衡性能、成本与灵活性需求。
369 0
|
11月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
841 7
|
11月前
|
存储 人工智能 边缘计算
AI时代下, 边缘云上的技术演进与场景创新
本文介绍了AI时代下边缘云的技术演进与场景创新。主要内容分为三部分:一是边缘云算力形态的多元化演进,强调阿里云边缘节点服务(ENS)在全球600多个节点的部署,提供低时延、本地化和小型化的价值;二是边缘AI推理的创新发展与实践,涵盖低时延、资源广分布、本地化及弹性需求等优势;三是云游戏在边缘承载的技术演进,探讨云游戏对边缘计算的依赖及其技术方案,如多开技术、云存储和网络架构优化,以提升用户体验并降低成本。文章展示了边缘云在未来智能化、实时化解决方案中的重要性。
501 3
|
7月前
|
边缘计算 弹性计算 人工智能
魔搭社区大模型一键部署到阿里云边缘云(ENS)
随着大模型技术的快速发展,业界的关注点正逐步从模型训练往模型推理 转变。这一转变不仅反映了大模型在实际业务中的广泛应用需求,也体现了技术优化和工程化落地的趋势。
761 7
|
10月前
|
存储 边缘计算 人工智能
基于阿里云边缘计算(ENS)的智能安防系统开发与部署
随着物联网和人工智能技术的发展,智能安防成为保障公共和企业安全的重要手段。阿里云边缘计算(ENS)提供低延迟、高可靠的计算能力,支持实时处理海量数据。本文介绍如何基于阿里云边缘计算开发并部署智能安防系统,涵盖视频监控、人脸识别、异常行为检测等功能,并通过实战案例展示其核心优势与最佳实践。
|
9月前
|
边缘计算 Cloud Native 调度
感谢认可!阿里云云原生大规模云边协同技术荣获浙江省科学技术进步奖一等奖
感谢认可!阿里云云原生大规模云边协同技术荣获浙江省科学技术进步奖一等奖
209 0