《医保行业容灾演练云上技术白皮书》——第三章 医保云容灾建设方案——3.2 省级数据中心建设框架

简介: 《医保行业容灾演练云上技术白皮书》——第三章 医保云容灾建设方案——3.2 省级数据中心建设框架

3.2 省级数据中心建设框架


image.png

逐步建立省级双数据中心,并行运行,互为容灾,进行生产维护、日常操作等工作。两个数据中心(数据中心A、数据中心B)网络系统的总体设计保持一致。根据国家网络安全等级保护三级要求,结合医疗保障业务的实际情况,将数据中心进行网络区域划分。数据中心的总体安全域分为基于双链路的核心业务区、基于互联网应用的公共服务区以及核心业务区与公共服务区之间的安全隔离区。

灾备系统建设:

双数据中心须实现数据层和业务应用层容灾的自动切换。双数据中心都应具备对称的基础设施和网络接入接出,保障数据管理层面、应用程序层面、访问通道层面都能够平滑切换。数据备份方案要做到双数据中心的数据库本地备份,各地须制定数据备份和灾难恢复方案。

计算和存储资源:

计算和存储资源由各省根据本地医疗保障信息平台设计规划和实际业务进行配置建设,对计算和存储资源性能指标的估算,必须满足未来3至5年的业务发展和管理需求,实现高可靠性、高扩展性、高兼容性、易管理维护性等需求。

省级网络建设:

医疗保障核心业务区为非涉密网络,通过内外网数据交换区与医疗保障公共服务网进行连接。省级、市级医疗保障核心业务区网络,纵向连接上下级医疗保障部门核心业务网,横向通过专线方式连接同级资源共享部门及外部关联单位。

网络安全建设:

各地按照等保三级安全要求,结合医疗保障业务实际建设医疗保障信息平台,着重加强防病毒、网络态势感知、终端接入管理、身份认证密码等网络安全体系建设,保障医疗保障信息平台安全可靠运行。

相关文章
|
7月前
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
4月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
7月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
7月前
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。
|
7月前
|
机器学习/深度学习 资源调度 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第30天】在数据中心管理和运营中,能源效率的优化是降低运营成本和减少环境影响的关键。本文旨在探讨如何应用机器学习技术来提升数据中心的能源效率。通过对现有数据中心运行数据的深入分析,开发预测性维护模型,以及实施智能资源调度策略,我们可以显著提高数据中心的能效。本研究提出了一种集成机器学习算法的框架,该框架能够实时监控并调整数据中心的能源消耗,确保以最佳性能运行。
|
7月前
|
存储 大数据 数据中心
提升数据中心能效的先进冷却技术
【5月更文挑战第27天】 在信息技术不断进步的今天,数据中心作为计算和存储的核心枢纽,其能源效率已成为评价其可持续性的关键指标。本文将探讨当前数据中心面临的热管理挑战,并展示一系列创新的冷却技术解决方案,旨在提高数据中心的能效,同时确保系统的稳定性和可靠性。通过对比传统冷却方法和新兴技术,我们将分析各种方案的优势、局限性以及实施难度,为数据中心运营者提供科学的决策参考。
|
7月前
|
存储 传感器 人工智能
探索现代数据中心的冷却技术革新
【5月更文挑战第18天】 在数字化时代,数据中心作为信息处理与存储的核心设施,其稳定性和效能至关重要。随着计算需求的激增,数据中心的冷却系统面临着前所未有的挑战。传统的空调冷却方法不仅耗能巨大,而且效率低下。本文将深入探讨现代数据中心冷却技术的最新进展,包括液冷技术、热管应用、环境辅助设计以及智能化管理等方面,旨在提供一种高效、可持续且经济的解决方案,以应对日益增长的冷却需求。
|
6月前
|
移动开发 监控 前端开发
基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化
基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化
|
7月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【5月更文挑战第11天】 在云计算和大数据的背景下,数据中心作为信息处理的核心设施,其能效问题一直是研究的热点。传统的能效管理方法难以应对日益增长的能源消耗和复杂多变的工作负载。本文提出一种基于机器学习技术的数据中心能效优化方案,通过实时监控和智能调度策略,有效降低能耗并提升资源利用率。实验结果表明,该方案能够减少约15%的能源消耗,同时保持服务质量。
|
7月前
|
机器学习/深度学习 数据采集 资源调度
利用机器学习技术优化数据中心能效
【5月更文挑战第27天】 在本文中,我们探讨了一种基于机器学习的技术框架,旨在实现数据中心能效的优化。通过分析数据中心的能耗模式并应用预测算法,我们展示了如何动态调整资源分配以减少能源消耗。与传统的摘要不同,此部分详细阐述了研究的动机、使用的主要技术手段以及期望达成的目标,为读者提供了对文章深入理解的基础。