《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(上)

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(上)

四、 总结和展望

2022年以来,数据库迁移上云态势显著提速,相较传统部署的数据库而言,云原生数据库通过存储计算分离,实现资源池化和弹性,具备高扩展性、高可用性、低成本等优势。近年来,云原生数据库在存算分离架构基础上,引入Serverless技术,具备智能弹性扩容能力,能够随着用户业务的请求数的增加和减少,自动“膨胀”和“缩小”,实现资源的智能“吞吐”。2021年SIGMOD大会上,阿里云发表《PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers》论文,创造性地提出了DDC(Disaggregated Data Centers)架构,实现数据库内计算、内存和存储三层资源解耦,三层资源均可以按需分层弹性,内存层支

持PB级弹性扩展。智能弹性技术的引入,为用户带来更经济的计费模式和更无感的扩容体验,成为云原生数据库技术新趋势。资源池化方面,随着RDMA高速网络和新型内存技术普及,在同一数据中心内,计算、内存和存储资源的三层解耦逐渐从理论走向实际,成为云原生数据库资源管理的新趋势。


(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务

1684815182188.png

客户背景

双十一是阿里巴巴旗下淘宝商城(天猫)的年度促销活动,双十一购物狂欢节从2009年11月11日举办至今经过了十多年的发展,已经成为每年例行的全民购物大狂欢,参与人数也从早期的百万人发展到现在上亿人,成交额从5000万跃进到5000亿。双十一与智能手机、移动互联网的兴起同步,见证了中国经济的蓬勃发展。2020年双十一,PolarDB、AnalyticDB支持了阿里数字经济体内几乎所有BU的业务,承载了集团的菜鸟、新零售供应链、DT数据系列产品、数据银行、生意参谋、人群宝、达摩院店小蜜、AE数据、盒马、天猫营销平台等130多个主要业务。


业务挑战

双十一大促当天,部分商家的优惠活动存在时限性或名额限制,在零点开始的一小时内,大量客户涌入,业务流量会突增数百倍,且在双十一当天,业务流量都远远超出日常访问值。数据库作为大促交易链路的核心环节,为了应对业务流量的突增,对数据库的弹性提出了很高的挑战。针对OLTP场景,传统方式下需要采购大量的服务器资源以支撑双十一流量高峰,数据库整体弹性能力不足,服务器采购周期长,双十一期间无法快速弹性,业务受损。峰值过后资源无法得到释放,大量资源长时间低效运行产生很大的资源浪费,成本高,运营效率低,PolarDB弹性能力,保证高性能同时,大幅降低集团采购成本。针对OLAP场景,AnalyticDB 在双11中,支持了集团的核心交易链路,这对实时高并发写入、在线检索的能力提出了极高的要求。双十一总共超过600亿条订单记录,波峰值达到500万TPS,是日常的100倍。而对于大规模的离线数据的写入链路,压力更是在双11时候更是达到了顶点,以数据银行业务为例,在双11当天,对AnalyticDB的 TPS峰值写到近1000万,写入流量峰值达到1.3GB/s。要这些业务波峰,随之而来的是对数据库资源弹性近乎苛刻的要求。资源必须能够快速部署资源,稳定拓展,稳定高效的承接业务,而在波峰过后,一切资源将随之释放以满足日常负载;



《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(下): https://developer.aliyun.com/article/1223504?groupCode=polardbforpg

相关实践学习
函数计算X RDS PostgreSQL,基于LLM大语言模型构建AI知识库
基于ChatGLM6B 大语言模型构建AI知识库问答应用。答疑群17125058181
相关文章
|
3月前
|
存储 NoSQL 关系型数据库
非关系型数据库-MongoDB技术(二)
非关系型数据库-MongoDB技术(二)
|
3月前
|
NoSQL 关系型数据库 MongoDB
非关系型数据库-MongoDB技术(一)
非关系型数据库-MongoDB技术(一)
|
2月前
|
Cloud Native 关系型数据库 分布式数据库
|
2月前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源:推动数据库技术新变革
在数字化时代,数据成为核心资产,数据库的性能和可靠性至关重要。阿里云的PolarDB作为新一代云原生数据库,凭借卓越性能和创新技术脱颖而出。其开源不仅让开发者深入了解内部架构,还促进了数据库生态共建,提升了稳定性与可靠性。PolarDB采用云原生架构,支持快速弹性扩展和高并发访问,具备强大的事务处理能力及数据一致性保证,并且与多种应用无缝兼容。开源PolarDB为国内数据库产业注入新活力,打破国外垄断,推动国产数据库崛起,降低企业成本与风险。未来,PolarDB将在生态建设中持续壮大,助力企业数字化转型。
99 2
|
3月前
|
存储 关系型数据库 MySQL
【阿里规约】阿里开发手册解读——数据库和ORM篇
从命名规范、建表规范、查询规范、索引规范、操作规范等角度出发,详细阐述MySQL数据库使用过程中所需要遵循的各种规范。
【阿里规约】阿里开发手册解读——数据库和ORM篇
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB开源项目未来展望:技术趋势与社区发展方向
【9月更文挑战第5天】随着云计算技术的发展,阿里云推出的云原生分布式数据库PolarDB受到广泛关注。本文探讨PolarDB的未来展望,包括云原生与容器化集成、HTAP及实时分析能力提升、智能化运维与自动化管理等技术趋势;并通过加强全球开源社区合作、拓展行业解决方案及完善开发者生态等措施推动社区发展,目标成为全球领先的云原生数据库之一,为企业提供高效、可靠的服务。
109 5
|
4月前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
97 5
|
4月前
|
存储 SQL Cloud Native
揭秘!PolarDB-X存储引擎如何玩转“时间魔术”?Lizard多级闪回技术让你秒回数据“黄金时代”!
【8月更文挑战第25天】PolarDB-X是一款由阿里巴巴自主研发的云原生分布式数据库,以其高性能、高可用性和出色的可扩展性著称。其核心竞争力之一是Lizard存储引擎的多级闪回技术,能够提供高效的数据恢复与问题诊断能力。本文通过一个电商公司的案例展示了一级与二级闪回技术如何帮助快速恢复误删的大量订单数据,确保业务连续性不受影响。一级闪回通过维护最近时间段内历史数据版本链,支持任意时间点查询;而二级闪回则通过扩展数据保留时间并采用成本更低的存储方式,进一步增强了数据保护能力。多级闪回技术的应用显著提高了数据库的可靠性和灵活性,为企业数据安全保驾护航。
47 1
|
4月前
|
Cloud Native 数据库 开发者
云原生数据库2.0问题之帮助阿里云数据库加速技术更新如何解决
云原生数据库2.0问题之帮助阿里云数据库加速技术更新如何解决
|
4月前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
77 0

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB