《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(上)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
全局流量管理 GTM,标准版 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(上)

1. 查询流程和执行计划

 

SQL语言完成用户和系统内部存储数据之间的交互。在执行阶段,AnalyticDB MySQL版中的查询,会首先被切分为多个Stage来执行,一个Stage就是执行计划中某一部分的物理实体。


image.png

 

在AnalyticDB MySQL架构中有三层:接入层、计算层、存储层,是计算存储分离架构。一条SQL语句执行过程,首先会进入接入层,经过解析器完成语句的解析生成执行计划,优化器对执行计划进行优化,形成逻辑执行计划。

 

分组聚合查询的处理流程,Controller节点会把查询的逻辑执行计划Plan分片下发到执行计划任务的各个节点上。

 

Stage2由4个Task组成,并行执行数据的扫描、过滤以及局部聚合等操作。

Stage1由2个Task执行,并行执行最终的聚合操作。

Stage0由1个Task执行,负责汇总Stage1的2个Task生成的最终聚合结果。

 

2. 算子

 

一个算子负责完成一个基本的数据处理逻辑,一组算子按照执行计划完成数据的一组处理规则,参数名称与功能如下:

 

Aggregation:通过sum()、count()、avg()等函数对数据进行聚合或分组聚合操作。

DistinctLimit:对应SQL语句中的DISTINCT LIMIT操作。

Filter:使用存储层数据的索引进行过滤。存储层数据没有索引,需要在计算层使用Filter算子进行过滤。

Join:对应SQL语句中的Join操作。

Project:对应SQL语句中对特定字段的投影操作,例如case when then控制流、concat()函数等。

StageOutput:用于将当前Stage处理后的数据通过网络传输到下游Stage的节点。

Sort:应SQL语句中ORDER BY子句的操作,执行ORDER BY字段的排序。

TableScan:用于从数据源读取数据,如果需要过滤数据,那么数据过滤由底层数据源使用索引高效完成。

TopN:对应SQL语句中的ORDER BY LIMIT m,n查询。

 

 

3. 影响查询性能的因素

 

影响查询性能的因素有:集群规格、节点数量、数据分布特征、数据量大小、查询并发度、查询复杂度。

 

1) 集群规格

 

不同集群规格的CPU核数、内存大小和数据存储介质等属性不同,处理子任务的能力也就不同,需要结合业务查询特征来选择集群规格

以Join或分组聚合为主的业务查询会消耗较多的CPU和内存资源

扫描数据和简单分组聚合操作的查询会消耗较多的磁盘I/O资源。

 

2) 节点数量

 

AnalyticDB MySQL版使用了分布式数据处理架构,一条查询会被分解成多个Stage在不同的节点上并行执行。所以如果集群中的节点数量越多,AnalyticDB MySQL版处理查询的能力也会越强。用户可以根据实际的业务需求来决定集群节点的购买数量,更多详情,请参见创建集群。

https://help.aliyun.com/document_detail/122234.html

 

3) 数据分布特征

 

由于使用了分布式数据处理架构,具备将一条查询分解到多个节点上并行执行的能力

充分利用多节点来并行处理查询,还取决于数据在存储节点上的分布特征

如果数据能够均匀分布在存储节点上,多个子任务在处理数据时,就能几乎同时结束任务

数据分布不均匀,子任务在处理数据时会存在时间上的长尾,从而影响最终的查询效果。

 

4) 数据量大小

 

在处理查询时,通常不会将处理过程中的临时结果暂时写到磁盘里,而是尽量在内存中将所有数据处理掉。

如果查询需要处理的数据量较大,就可能会长时间占用大量的资源,导致整体查询效率降低,进而影响最终的查询效果。

表存储的数据量较大,在执行索引过滤、明细数据读取等操作时会出现争抢磁盘I/O资源,导致查询变慢。

 

5) 查询并发度

 

能同时处理的查询数量也会存在上限。如果查询的并发度过高,集群节点资源已到达瓶颈,那么后台的查询就会出现较长时间的排队,影响整体查询效果。

 

6) 查询复杂度

 

查询的复杂度不同造成的压力也不同

如果查询中过滤条件过于复杂,会在数据过滤时对存储节点造成一定压力

如果查询中Join算子过多,数据可能需要在不同节点间进行多次的网络传输,造成网络阻塞

如果查询中分组字段过多,也会占用较多的内存资源。

 

 

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——三、SQL优化与慢查询解决(下)https://developer.aliyun.com/article/1222968?groupCode=certification

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
19天前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
67 13
|
15天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
186 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
14天前
|
自然语言处理 搜索推荐 数据安全/隐私保护
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
鸿蒙登录页面设计展示了 HarmonyOS 5.0(Next)的未来美学理念,结合科技与艺术,为用户带来视觉盛宴。该页面使用 ArkTS 开发,支持个性化定制和无缝智能设备连接。代码解析涵盖了声明式 UI、状态管理、事件处理及路由导航等关键概念,帮助开发者快速上手 HarmonyOS 应用开发。通过这段代码,开发者可以了解如何构建交互式界面并实现跨设备协同工作,推动智能生态的发展。
111 10
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
|
3天前
|
DataWorks 关系型数据库 OLAP
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
|
10天前
|
安全 API 数据安全/隐私保护
速卖通AliExpress商品详情API接口深度解析与实战应用
速卖通(AliExpress)作为全球化电商的重要平台,提供了丰富的商品资源和便捷的购物体验。为了提升用户体验和优化商品管理,速卖通开放了API接口,其中商品详情API尤为关键。本文介绍如何获取API密钥、调用商品详情API接口,并处理API响应数据,帮助开发者和商家高效利用这些工具。通过合理规划API调用策略和确保合法合规使用,开发者可以更好地获取商品信息,优化管理和营销策略。
|
25天前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
28天前
|
数据采集 DataWorks 搜索推荐
阿里云DataWorks深度评测:实战视角下的全方位解析
在数字化转型的大潮中,高效的数据处理与分析成为企业竞争的关键。本文深入评测阿里云DataWorks,从用户画像分析最佳实践、产品体验、与竞品对比及Data Studio公测体验等多角度,全面解析其功能优势与优化空间,为企业提供宝贵参考。
107 13
|
24天前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。
|
1月前
|
存储 监控 调度
云服务器成本优化深度解析与实战案例
本文深入探讨了云服务器成本优化的策略与实践,涵盖基本原则、具体策略及案例分析。基本原则包括以实际需求为导向、动态调整资源、成本控制为核心。具体策略涉及选择合适计费模式、优化资源配置、存储与网络配置、实施资源监控与审计、应用性能优化、利用优惠政策及考虑多云策略。文章还通过电商、制造企业和初创团队的实际案例,展示了云服务器成本优化的有效性,最后展望了未来的发展趋势,包括智能化优化、多云管理和绿色节能。
|
2月前
|
编译器 PHP 开发者
PHP 8新特性解析与实战应用####
随着PHP 8的发布,这一经典编程语言迎来了诸多令人瞩目的新特性和性能优化。本文将深入探讨PHP 8中的几个关键新功能,包括命名参数、JIT编译器、新的字符串处理函数以及错误处理改进等。通过实际代码示例,展示如何在现有项目中有效利用这些新特性来提升代码的可读性、维护性和执行效率。无论你是PHP新手还是经验丰富的开发者,本文都将为你提供实用的技术洞察和最佳实践指导。 ####
34 1

热门文章

最新文章

推荐镜像

更多