SREWorks云原生数智运维工程实践-Kubernetes 资源编排之四:CRD+Operator 篇(上)

本文涉及的产品
资源编排,不限时长
简介: SREWorks云原生数智运维工程实践-

 

作者:炯思钟炯恩)、雪尧郭耀星

 

这是我们的《Kubernetes资源编排系列》的第四篇——CRD+Operator篇。在前面的文章中,常常会提到CRD和k8s operator,但并没有对此进行深入的探讨。作为k8s中的一大亮点,在本篇文章中,我们会详细展开讲讲。

 

一、 什么是CRD

 

如果K8S中的自带资源类型不足以满足业务需求,需要定制开发资源怎么办?自定义资源Custom Resource由此产生。那么,如何让Kubernetes认识这些自定义的资源呢?CRDCustom Resource Definition就承担了一个说明书的角色,让Kubernetes来认识这个自定义资源CR。

 

那么CRD是怎么来的呢?最早是谷歌提出Third Party Resource的概念,希望开发者以插件化形式扩展K8s API对象模型,以增强整个k8s的生态。基于Third Party Resource这一概念,Kubernetes社区在1.7版本中提出了CRD的概念。

 

随便打开一个CRD的YAML可以看到,其主体部分是使用OpenAPI v3 schema来描述CR的字段结构,类似编程语言中的强类型声明。

 

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

  name: lights.light.sreworks.io

spec:

  group: light.sreworks.io

  names:

    kind: Light

    plural: lights

  scope: Namespaced

  versions:

    - name: v1

      served: true

      storage: true

      schema:

        openAPIV3Schema:

          description: ...

          type: object

          properties:

            spec:

              type: object

              properties:

                company:

                  type: string

                ...

 

 

有了CRD之后,我们可以自由地增加各种内置资源平级的资源,原本很多之前只维护在软件内部的元数据,也可以被写入到k8s集群中。这极大地拓宽了我们的想象力,什么交换机、作业、路由等各种关联的资源都一股脑地放进集群里面去。

 

在各种自定义资源被放进去之后,就会有人问,这放进去是挺方便的,但是放进去就会生效吗?是的,资源的生效就是Operator的功劳。下面我们就开始介绍Operator。

 

二、 什么是Operator

 

首先随便翻看一本词典看一下operator这个词的定义操作员/运算符,是个名词。那么,operator描述的应该是一个围绕“操作、控制”概念的东西。为了让大家有个更直观的认识,我们来举一个例子,比如1+2=3,这个+就是一个operator运算符,这个+让两个数字发生了一些互动(相加)。

 

有了词典里的概念铺垫后,我们继续往下分析,既然是一种操作或运算,那么在k8s中,是谁来操作?而被操作的对象又是什么呢?让我们来看一下OperatorFramework官网上对于Operator的解释

 

WHAT IS AN OPERATOR AFTER ALL?

An Operator represents human operational knowledge in software, to reliably manage an application. They are methods of packaging, deploying, and managing a Kubernetes application.

 

从这个定义中,我们可以看到,这个operator是指由人发出的,对k8s应用Kubernetes application展开的操作。一般围绕应用的操作有哪些?部署、升级、扩缩容、卸载等等。我们可以先这样理解,operator应该就是一个类似控制器的东西,里面含有一些运维操作后面会继续展开,其实不仅仅是这些

 

较真一点的读者可能会问,既然这样,这东西叫controller是不是会更贴切一点呢?事实上,问出这个问题的读者,和真相很接近了,每个operator基本都会有个控制器,但又不仅仅只有一个控制器,还会有前面提到过的资源定义CRDCustomResourceDefinition。每种自定义资源背后都会有一个或多个控制器,让这些资源看起来像活的一样,我们举一个比较切近生活的例子:

 

我们为家里的灯制作一个CRD和operator,把这个operator和灯开关连起来,当用户修改这个YAML的时候,operator会向开关转发指令。

 

 

apiVersion: v1

kind: Light

metadata:

  name: bedroom

spec:

  power: on

  brightness: 70

  colorTemperature: 5000k

 

 

从名字可以看出这盏灯被放在卧室bedroom,当power=on的时候电灯打开,power=off的时候电灯关闭,修改亮度brightness和色温colorTemperature能操纵这盏灯在打开状态下的视觉效果。

 

通过上面这段灯的YAML我们可以发现,在CRD+operator的场景下,我们可以只关注对象终态,而不去关注其中的控制过程。比如当前家中网络不太稳定,要花1-2秒,重试3次operator才能成功下发指令打开灯,这些重试我们是不感知的。我们只知道只要将power设置为on,灯就会亮。类比到k8s的日常实践,也是这样:一个Pod被放到集群后,控制器会想方设法去克服困难从仓库拉取镜像,启动工作负载,如果crash掉了就立即重试,直到稳定运行为止。我们只关心这个Pod是否最终拉起可用。

 

所以,operator其实是一种架构理念,它区别于常见的shell等运维脚本方案:operator希望应用能够自己管理自己,而不是由运维人员写脚本从外围来控制他们。不过,如果仅仅是这样,可能operator也只能叫controller了,只是一些自控制的逻辑而已。从最前面提到的operator的概念可以看出,operator能够让两种以上的资源产生一些互动关系,那么这是如何实现的呢?

 

我们继续用上面的灯的例子再加个YAML让大家感受一下:

 

我们把自己的家也用一个自定义资源对象来描述,用来承载一些家中的全局设置。

 

 

apiVersion: v1

kind: Home

metadata:

  name: jiongsi-home

spec:

  nobody: false

  stayOpen: []

 

 

当我们家中所有人都出门的时候,家中就没有人了,于是将nobody设为true。然后Home的operator会遍历家中所有的开关、电器、灯等设备,全部都给关上在YAML上设置power=off。同时也会根据常亮的策略stayOpen,保持某些电器不关闭,比如冰箱。

 

image.png

 

从上面的例子可以看出,每个控制器只负责自己的那部分,但从顶层往下看,已经实现了级联控制,能够实现牵一发而动全身的效果。这个就是上面所提到的operator的更深一层的机制:能够像运算符一样,让几种资源产生某种互动关系,一起协作完成一些复杂的工程动作。

 

三、 如何实现K8S Operator

 

不管是原生YAML/Helm还是Kustomize都是通过配置来搞定各类事情。然而CRD+Operator就不一样了,它们让你直接接入apiserver,作为K8S的一部分监听所有你关心的对象,并通过代码进行状态维持及管理。因为CRD的开发是非常复杂的,除了业务逻辑之外,还需要做很多基础的工作,非常不便,所以有了Operator的开发框架(常见的有KubeBuilder和Operator-SDK),让开发人员专注于CRD的业务代码开发。

 

我们可以来看一下operator的架构实现,这个有助于我们理解operator的工作原理

 

image.png

 

如图可知,Operator内部有个控制器来监听CR的变化,同时由于每个变化对应的函数执行需要一定的耗时,所以引入一个队列来依次执行这些函数。由于整个逻辑的执行链路不同于普通的web服务,所以也需要一个框架来承载请求的流转。

 

市面上的KubeBuilder或Operator-SDK开发框架可以降低Operator的难度,但Operator的开发在当前所有的几类组件托管方案当中仍然是最为复杂的。前前后后需要CRD设计及安装,编译Operator及部署到集群,最后再下发CR,外围为了配套这些内容可能还需要上面Helm或Kustomize的协助,配合对应的CICD流程及工具。

 

Spark Operator

 

Spark Operator是大数据分布式系统在k8s场景一次经典的实践。原本Spark的作业提交是需要通过spark-submit命令,但有了Spark Operator之后,我们可以直接向k8s提交作业YAML,然后Spark Operator监听CR,将这一作业提交给控制器。实现了我们前文提到的,将作业资源放在k8s集群进行管理这一目标。

 

image.png

 


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
17天前
|
运维 Kubernetes Cloud Native
云原生技术入门及实践
【10月更文挑战第39天】在数字化浪潮的推动下,云原生技术应运而生,它不仅仅是一种技术趋势,更是企业数字化转型的关键。本文将带你走进云原生的世界,从基础概念到实际操作,一步步揭示云原生的魅力和价值。通过实例分析,我们将深入探讨如何利用云原生技术提升业务灵活性、降低成本并加速创新。无论你是云原生技术的初学者还是希望深化理解的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
8天前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
9天前
|
Cloud Native 安全 Docker
云原生技术在现代应用部署中的实践与思考
本文深入探讨了云原生技术如何在现代应用部署中发挥关键作用,并提供了具体的代码示例来展示其实现。通过分析云原生的核心概念和优势,我们将了解如何利用这些技术来提高应用的可扩展性、可靠性和安全性。文章还将讨论云原生技术的未来发展趋势,以及如何将其应用于实际项目中,以实现更高效和灵活的应用部署。
|
16天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
42 5
|
16天前
|
弹性计算 Kubernetes Cloud Native
云原生技术的实践与思考
云原生技术的实践与思考
30 2
|
17天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####
|
5天前
|
Cloud Native 持续交付 云计算
云计算的转型之路:探索云原生架构的崛起与实践####
随着企业数字化转型加速,云原生架构以其高效性、灵活性和可扩展性成为现代IT基础设施的核心。本文深入探讨了云原生技术的关键要素,包括容器化、微服务、持续集成/持续部署(CI/CD)及无服务器架构等,并通过案例分析展示了这些技术如何助力企业实现敏捷开发、快速迭代和资源优化。通过剖析典型企业的转型经历,揭示云原生架构在应对市场变化、提升业务竞争力方面的巨大潜力。 ####
17 0
|
17天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
18天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
20天前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####