《云原生网络数据面可观测性最佳实践》——四、ACK Net-Exporter 快速上手——1.Prometheus + Grafana配置(下)

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 《云原生网络数据面可观测性最佳实践》——四、ACK Net-Exporter 快速上手——1.Prometheus + Grafana配置(下)

更多精彩内容,欢迎观看:

《云原生网络数据面可观测性最佳实践》——四、ACK Net-Exporter 快速上手——1.Prometheus + Grafana配置(上):https://developer.aliyun.com/article/1221325?spm=a2c6h.13148508.setting.20.15f94f0eRr2vYu


自建Grafana

指标已经成功的被采集到了Prometheus,那么下一步我们需要部署Grafana,实现指标的可视化展示。可以参考下面的yaml部署Grafana的服务端和对外暴露的svc

 

apiVersion: apps/v1
kind: Deployment
metadata:
  name: grafana-core
  namespace: prometheus
  labels:
    app: grafana
    component: core
spec:
  replicas: 1
  selector:
    matchLabels:
      app: grafana
  template:
    metadata:
      labels:
        app: grafana
        component: core
    spec:
      containers:
      - image: grafana/grafana:4.2.0
        name: grafana-core
        imagePullPolicy: IfNotPresent
        # env:
        resources:
          # keep request = limit to keep this container in guaranteed class
          limits:
            cpu: 500m
            memory: 500Mi
          requests:
            cpu: 100m
            memory: 100Mi
        env:
          # The following env variables set up basic auth twith the default admin user and admin password.
          - name: GF_AUTH_BASIC_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "false"
          # - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          #   value: Admin
          # does not really work, because of template variables in exported dashboards:
          # - name: GF_DASHBOARDS_JSON_ENABLED
          #   value: "true"
        readinessProbe:
          httpGet:
            path: /login
            port: 3000
          # initialDelaySeconds: 30
          # timeoutSeconds: 1
        volumeMounts:
        - name: grafana-persistent-storage
          mountPath: /var
      volumes:
      - name: grafana-persistent-storage
        emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: prometheus
  labels:
    app: grafana
    component: core
spec:
  type: LoadBalancer
  ports:
    - port: 3000
  selector:
    app: grafana
    component: core

 

登录Grafana的对外暴露端口,我们需要设置采集源,设置Grafana的数据源来自Prometheus,地址填写Prometheus的SVC的clusterip和相关的接口。

 image.png

image.png

 

2) ARMS-Prometheus(强力推荐)

方式一:创建集群时开启

 

在创建集群的组件配置页面,选中使用Prometheus监控服务。具体操作,请参见创建Kubernetes托管版集群

 image.png

 

方式二:在已有集群中开启

 

登录容器服务管理控制台,在左侧导航栏选择集群

在集群列表页面,单击目标集群名称,然后在左侧导航栏,选择运维管理 > 组件管理 > ack-arms-prometheus组件进行安装

 image.png

 

安装完毕,可以在ARMS-Prometheus的控制台看到此集群的相关实例,它会自动化的配置相关的服务发现和Grafana大盘展示,相比于第三方Prometheus,节省了大量的联调成本 image.png

image.png

相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
24天前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
14天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
79 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
11天前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
82 20
|
8天前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
38 7
|
14天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
102 3
|
14天前
|
Prometheus 监控 前端开发
Grafana 安装配置教程,让你的 Prometheus 监控数据变得更美观
《Grafana安装配置教程,让你的Prometheus监控数据变得更美观》简介: Grafana是一个开源的度量分析与可视化工具,支持多种数据源(如Prometheus),提供丰富的可视化功能和警报机制。本文详细介绍了Grafana的安装、汉化方法及模板使用,帮助用户轻松创建美观、灵活的数据面板,并实现数据的协作与共享。通过Docker镜像、配置文件修改或替换前端页面等方式实现汉化,让用户更便捷地使用中文界面。此外,还提供了导入JSON格式模板的具体步骤,方便快速搭建仪表盘。
30 2
|
14天前
|
Prometheus Cloud Native Linux
Prometheus+Grafana新手友好教程:从零开始搭建轻松掌握强大的警报系统
本文介绍了使用 Prometheus 和 Grafana 实现邮件报警的方案,包括三种主要方法:1) 使用 Prometheus 的 Alertmanager 组件;2) 使用 Grafana 的内置告警通知功能;3) 使用第三方告警组件如 OneAlert。同时,详细描述了环境准备、Grafana 安装配置及预警设置的步骤,确保用户能够成功搭建并测试邮件报警功能。通过这些配置,用户可以在系统或应用出现异常时及时收到邮件通知,保障系统的稳定运行。
63 1
|
2月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
2月前
|
Kubernetes Cloud Native 开发者
云原生入门:Kubernetes的简易指南
【10月更文挑战第41天】本文将带你进入云原生的世界,特别是Kubernetes——一个强大的容器编排平台。我们将一起探索它的基本概念和操作,让你能够轻松管理和部署应用。无论你是新手还是有经验的开发者,这篇文章都能让你对Kubernetes有更深入的理解。
|
2月前
|
运维 Kubernetes Cloud Native
云原生技术入门:Kubernetes和Docker的协同工作
【10月更文挑战第43天】在云计算时代,云原生技术成为推动现代软件部署和运行的关键力量。本篇文章将带你了解云原生的基本概念,重点探讨Kubernetes和Docker如何协同工作以支持容器化应用的生命周期管理。通过实际代码示例,我们将展示如何在Kubernetes集群中部署和管理Docker容器,从而为初学者提供一条清晰的学习路径。

热门文章

最新文章