逆向倾向评分 (Inverse Propensity Scoring, IPS) 原理解析与MF算法的结合使用

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 逆向倾向评分 (Inverse Propensity Scoring, IPS) 原理解析与MF算法的结合使用

正文


当历史交互数据为MCAR(Missing Completely At Random,完全随机缺失)时,评级预测损失函数可以定义为:

1.png


其中,Y ^ 表示预测的评级;Y  表示 u 对 i i的实际评级;o u , i = 1  表示 u 对 i 有评级;∣ { ( u , i ) : o u , i = 1 } ∣ 表示所有被浏览项目的数量;δ u , i ( Y , Y ^ ) \表示 Y  与 Y ^  之间匹配程度的度量,可以定义为:


2.png

但是历史记录往往是MNAR(Missing Not At Random,非随机缺失)的,那么整体评级预测损失就是有偏的:

3.png

其中,p ( o u , i = 1 ) 是指 u 浏览 i  的概率;4.png指的是所有 u u 对所有 i ii 平均评分损失,它是一种算术平均;z5.png的是被浏览的 i ii 的期望评分损失,它是一种加权平均。

加权平均是有偏的,它的偏差就来自于给不同自变量分配的权值,在推荐任务中,这个权值指的就是物品被观测(浏览)到的概率。一种减轻MNAR反馈中偏差的影响的IPS估计法这样定义评级预测损失函数:

6.png

该公式的思想是消除权值(浏览概率)的影响,于是就有了无偏估计的公式:


7.png

注意到,8.png9.png的区别不仅仅在于消除权值,而且 8.png是整体的损失,而9.png浏览过的项目的损失。

所以要使这个公式真正起作用,必须知道全部项目的 p ( o u , i = 1 ) p(o_{u,i}=1)p(o

u,i


=1) 的具体值。在实际的应用中,历史交互数据中记录了部分评级数据,因此可以利用某种拟合方法来推断 p ( o u , i = 1 )  的模型,例如:

通过朴素贝叶斯进行倾向估计


10.png


其中 p ( y = r ∣ o = 1 ) p(y=r|o=1)p(y=r∣o=1) 和 p ( o = 1 ) p(o=1)p(o=1) 是通过MNAR数据集中的历史交互数据统计出来的。p ( y = r ) p(y=r)p(y=r) 是从一个MCAR数据集获取的,这样就能计算出MCAR的p ( o ( u , i ) = 1 ∣ y ( u , i ) = r ) )。这种方法必须要确保有部分可用的MCAR数据。并且它只能拟合出被评分过项目的浏览概率。

通过逻辑回归进行倾向估计

p ( o u , i ∣ X , ϕ ) = σ ( ω T X u , i + β i + γ u )

其中,σ ( ⋅ ) 是Sigmoid函数,用于将数值归一化;X u ,是用户-项目对的特征;ϕ 代表参数集合,包括:ω T是权重参数、β i  是项目的偏置项参数、γ u  是和用户的偏置项参数。这种方法不需要实现筛选出一个MCAR数据集,且可以拟合所有项目的浏览概率。

获得了权重 p ( o u , i = 1 ) 后就可以预测对应的无偏评级了。需要说明的是,通过朴素贝叶斯进行倾向估计是相对简单易实现的方法,但这种方法得到的结果是没法直接用来产生推荐的,但是下一步已经很好继续下去了。例如可以使用矩阵分解(matrix factorization,MF)来预测其余项目的评分。

11.png

我随手找了一张矩阵分解方法的示意图,可以认为,拟合出权重 p ( o u , i = 1 )  的项目的无偏评级就是上表中红色的数值,未拟合出权重的项目评级就是上表中的问号。矩阵分解通过下面的公式将用户-物品交互矩阵分解成两个隐特征矩阵:

12.png


其中 p u  是用户的隐特征矩阵;q i 是项目的隐特征矩阵;a u 、b i  、c分别是用户、项目和全局偏置项。那么此时,矩阵分解的损失函数就表达为:


13.png

其中14.png指的是无偏的预测评级与真实评级之间的损失15.png是为了防止过拟合加入的正则化项。优化的参数P , Q , A 分别代表用户的隐特征矩阵、项目的隐特征矩阵和偏置项,最终的预测评级就表示为:16.png

这时候,之前未拟合出权重的项目评级也可以通过公式16.png计算得到了

相关文章
|
1月前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
87 13
|
8天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
16天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
69 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
25天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
18天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
74 14
|
19天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
219 30
|
23天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
27天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
101 1
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
65 3

推荐镜像

更多