一日一技:Python多线程的事件监控

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 一日一技:Python多线程的事件监控

摄影:产品经理沙拉

设想这样一个场景:

你创建了10个子线程,每个子线程分别爬一个网站,一开始所有子线程都是阻塞等待。一旦某个事件发生:例如有人在网页上点了一个按钮,或者某人在命令行输入了一个命令,10个爬虫同时开始工作。

肯定有人会想到用Redis来实现这个开关:所有子线程全部监控Redis中名为start_crawl的字符串,如果这个字符串不存在,或者为0,那么就等待1秒钟,再继续检查。如果这个字符串为1,那么就开始运行。

代码片段可以简写为:

import time
import redis
client = redis.Redis()
while client.get('start_crawl') != 1:
    print('继续等待')
    time.sleep(1)

这样做确实可以达到目的,不过每一个子线程都会频繁检查Redis。

实际上,在Python的多线程中,有一个Event模块,天然就是用来实现这个目的的。

Event是一个能在多线程中共用的对象,一开始它包含一个为False的信号标志,一旦在任一一个线程里面把这个标记改为True,那么所有的线程都会看到这个标记变成了True

我们通过一段代码来说明它的使用方法:

import threading
import time
class spider(threading.Thread):
    def __init__(self, n, event):
        super().__init__()
        self.n = n
        self.event = event
    def run(self):
        print(f'第{self.n}号爬虫已就位!')
        self.event.wait()
        print(f'信号标记变为True!!第{self.n}号爬虫开始运行')
eve = threading.Event()
for num in range(10):
    crawler = spider(num, eve)
    crawler.start()
input('按下回车键,启动所有爬虫!')
eve.set()
time.sleep(10)

运行效果如下图所示:

在这段代码中,线程spider在运行以后,会运行到self.event.wait()这一行,然后10个子线程会全部阻塞在这里。而这里的self.event,就是主线程中eve = threading.Event()生成的对象传入进去的。

在主线程里面,当执行了eve.set()后,所有子线程的阻塞会被同时解除,于是子线程就可以继续运行了。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
2月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
1月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
108 38
|
26天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
1月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
60 4
|
1月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
76 4
|
1月前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
177 2
|
20天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
54 0
|
2月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
监控 数据可视化 Java
如何使用JDK自带的监控工具JConsole来监控线程池的内存使用情况?
如何使用JDK自带的监控工具JConsole来监控线程池的内存使用情况?
|
7月前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。