Kubernetes微服务架构应用实践

简介:

谷歌于2015年正式推出的Kubernetes开源项目目前已经吸引了众多IT公司的关注,这些公司包括Redhat、CoreOS、IBM、惠普等知名IT公司,也包括国内如华为、时速云等公司。为什么Kubernetes会引发这么多公司的关注?最根本的原因是Kubernetes是新一代的基于先进容器技术的微服务架构平台,它将当前火爆的容器技术与微服务架构两大吸引眼球的技术点完美的融为一体,并且切切实实的解决了传统分布式系统开发过程中长期存在的痛点问题。

本文假设您已经很熟悉并掌握了Docker技术,这里不会再花费篇幅介绍它。正是通过轻量级的容器隔离技术,Kubernetes实现了“微服务”化的特性,同时借助于Docker提供的基础能力,使得平台的自动化能力得以实现。

概念与原理

作为一个架构师来说,我们做了这么多年的分布式系统,其实我们真正关心的并不是服务器、交换机、负载均衡器、监控与部署这些事物,我们真正关心的是“服务”本身,并且在内心深处,我们渴望能实现图1所示的下面的这段“愿景”:

我的系统中有ServiceA、ServiceB、ServiceC三种服务,其中ServiceA需要部署3个实例、而ServiceB与ServiceC各自需要部署5个实例,我希望有一个平台(或工具)帮我自动完成上述13个实例的分布式部署,并且持续监控它们。当发现某个服务器宕机或者某个服务实例故障的时候,平台能够自我修复,从而确保在任何时间点,正在运行的服务实例的数量都是我所预期的。这样一来,我和我的团队只需关注服务开发本身,而无需再为头疼的基础设施和运维监控的事情而烦恼了。

图1 分布式系统架构愿景

直到Kubernetes出现之前,没有一个公开的平台声称实现了上面的“愿景”,这一次,又是谷歌的神作惊艳了我们。Kubernetes让团队有更多的时间去关注与业务需求和业务相关的代码本身,从而在很大程度上提升了整个软件团队的工作效率与投入产出比。

Kubernetes里核心的概念只有以下几个:

Service

Pod

Deployments(RC)

Service表示业务系统中的一个“微服务”,每个具体的Service背后都有分布在多个机器上的进程实例来提供服务,这些进程实例在Kubernetes里被封装为一个个Pod,Pod基本等同于Docker Container,稍有不同的是Pod其实是一组密切捆绑在一起并且“同生共死”的Docker Container,从模型设计的角度来说,的确存在一个服务实例需要多个进程来提供服务并且它们需要“在一起” 的情况。

Kubernetes的Service与我们通常所说的“Service”有一个明显的的不同,前者有一个虚拟IP地址,称之为“ClusterIP”,服务与服务之间“ClusterIP+服务端口”的方式进行访问,而无需一个复杂的服务发现的API。这样一来,只要知道某个Service的ClusterIP,就能直接访问该服务,为此,Kubernetes提供了两种方式来解决ClusterIP的发现问题:

第一种方式是通过环境变量,比如我们定义了一个名称为ORDER_SERVICE 的Service ,分配的ClusterIP为10.10.0.3 ,则在每个服务实例的容器中,会自动增加服务名到ClusterIP映射的环境变量:ORDER_SERVICE_SERVICE_HOST=10.10.0.3,于是程序里可以通过服务名简单获得对应的ClusterIP。

第二种方式是通过DNS,这种方式下,每个服务名与ClusterIP的映射关系会被自动同步到Kubernetes集群里内置的DNS组件里,于是直接通过对服务名的DNS Lookup机制就找到对应的ClusterIP了,这种方式更加直观。

由于Kubernetes的Service这一独特设计实现思路,使得所有以TCP /IP 方式进行通信的分布式系统都能很简单的迁移到Kubernetes平台上了。如图2所示,当客户端访问某个Service的时候,Kubernetes内置的组件kube-proxy透明的实现了到后端Pod的流量负载均衡、会话保持、故障自动恢复等高级特性。

图2 Kubernetes负载均衡原理

Kubernetes是如何绑定Service与Pod的呢?它如何区分哪些Pod对应同一个Service?答案也很简单——“贴标签”。每个Pod都可以贴一个或多个不同的标签(Label),而每个Service都一个“标签选择器”,标签选择器(Label Selector)确定了要选择拥有哪些标签的对象,比如下面这段YAML格式的内容定义了一个称之为ku8-redis-master的Service,它的标签选择器的内容为“app: ku8-redis-master”,表明拥有“app= ku8-redis-master”这个标签的Pod都是为它服务的。

apiVersion: v1

kind: Service

metadata:

name: ku8-redis-master

spec:

ports:

  • port: 6379

selector:

app: ku8-redis-master

下面是对应的Pod的定义,注意到它的labels属性的内容:

apiVersion: v1

kind: Pod

metadata:

name: ku8-redis-master

labels:

app: ku8-redis-master

spec:

containers:

  • name: server

image: redis

ports:

  • containerPort: 6379

restartPolicy: Never

最后,我们来看看Deployment/RC的概念,它的作用是用来告诉Kubernetes,某种类型的Pod(拥有某个特定标签的Pod)需要在集群中创建几个副本实例,Deployment/RC的定义其实是Pod创建模板(Template)+Pod副本数量的声明(replicas):

apiVersion: v1

kind: ReplicationController

metadata:

name: ku8-redis-slave

spec:

replicas: 2

template:

metadata:

labels:

app: ku8-redis-slave

spec:

containers:

  • name: server

image: devopsbq/redis-slave

env:

  • name: MASTER_ADDR

value: ku8-redis-master

ports:

  • containerPort: 6379

Kubernetes开发指南

本节我们以一个传统的Java应用为例,来说明如何将其改造迁移到Kubernetes的先进微服务架构平台上来。

如图3所示,我们的这个示例程序是一个跑在Tomcat里的Web应用,为了简化,没有用任何框架,直接在JSP页面里通过JDBC操作数据库。

图3 待改造的Java Web应用

上述系统中,我们将MySQL服务与Web应用分别建模为Kubernetes中的一个Service,其中MySQL服务的Service定义如下:

apiVersion: v1

kind: Service

metadata:

name: mysql

spec:

ports:

  • port: 3306

selector:

app: mysql_pod

MySQL服务对应的Deployment/RC的定义如下:

apiVersion: v1

kind: ReplicationController

metadata:

name: mysql-deployment

spec:

replicas: 1

template:

metadata:

labels:

app: mysql_pod

spec:

containers:

  • name: mysql

image: mysql

imagePullPolicy: IfNotPresent

ports:

  • containerPort: 3306

env:

  • name: MYSQL_ROOT_PASSWORD

value: "123456"

下一步,我们需要改造Web应用中获取MySQL地址的这段代码,从容器的环境变量中获取上述MySQL服务的IP与Port:

String ip=System.getenv("MYSQL_SERVICE_HOST");

String port=System.getenv("MYSQL_SERVICE_PORT");

ip=(ip==null)?"localhost":ip;

port=(port==null)?"3306":port;

conn = java.sql.DriverManager.getConnection("jdbc:mysql://"+ip+":"+port+"?useUnicode=true&characterEncoding=UTF-8", "root","123456");

接下来,将此Web应用打包为一个标准的Docker镜像,名字为k8s_myweb_image,这个镜像直接从官方Tomcat镜像上添加我们的Web应用目录demo到webapps目录下即可,Dockerfile比较简单,如下所示:

FROM tomcat

MAINTAINER bestme

ADD demo /usr/local/tomcat/webapps/demo

类似之前的MySQL服务定义,下面是这个Web应用的Service定义:

apiVersion: v1

kind: Service

metadata:

name: hpe-java-web

spec:

type: NodePort

ports:

  • port: 8080

nodePort: 31002

selector:

app: hpe_java_web_pod

我们看到这里用了一个特殊的语法:NodePort,并且赋值为31002,词语法的作用是让此Web应用容器里的8080端口被NAT映射到kuberntetes里每个Node上的31002端口,从而我们可以用Node的IP和端口31002来访问Tomcat的8080端口,比如我本机的可以通过http://192.168.18.137:31002/demo/来访问这个Web应用。

下面是Web应用的Service对应的Deployment/RC的定义:

apiVersion: v1

kind: ReplicationController

metadata:

name: hpe-java-web-deployement

spec:

replicas: 1

template:

metadata:

labels:

app: hpe_java_web_pod

spec:

containers:

  • name: myweb

image: k8s_myweb_image

imagePullPolicy: IfNotPresent

ports:

  • containerPort: 8080

定义好所有Service与对应的Deployment/RC描述文件后(总共4个yaml文件),我们可以通过Kubernetes的命令行工具kubectrl –f create xxx.yaml提交到集群里,如果一切正常,Kubernetes会在几分钟内自动完成部署,你会看到相关的资源对象都已经创建成功:

-bash-4.2# kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

hpe-java-web 10.254.183.22 nodes 8080/TCP 36m

kubernetes 10.254.0.1 443/TCP 89d

mysql 10.254.170.22 3306/TCP 36m

-bash-4.2# kubectl get pods

NAME READY STATUS RESTARTS AGE

hpe-java-web-deployement-q8t9k 1/1 Running 0 36m

mysql-deployment-5py34 1/1 Running 0 36m

-bash-4.2# kubectl get rc

NAME DESIRED CURRENT AGE

hpe-java-web-deployement 1 1 37m

mysql-deployment 1 1 37m

结束语

从上面步骤来看,传统应用迁移改造到Kubernetes上还是比较容易的,而借助于Kubernetes的优势,即使一个小的开发团队,也能在系统架构和运维能力上迅速接近一个大的研发团队的水平。

此外,为了降低Kubernetes的应用门槛,我们(惠普中国CMS研发团队)开源了一个Kubernetes的管理平台Ku8 eye,项目地址为https://github.com/bestcloud/ku8eye,Ku8 eye很适合用作为小公司的内部PaaS应用管理平台,其功能架构类似图4所示的Ku8 Manager企业版,Ku8 eye采用Java开发完成,是目前唯一一个开源的Kubernetes图形化管理系统,也希望更多爱好开源和有能力的同行参与进来,将它打造成为国内最好的云计算领域的开源软件。

图4 基于Kubernetes的PaaS平台架构

作者简介:吴治辉,惠普公司系统架构师,拥有超过15年的软件研发经验,专注于电信软件和云计算方面的软件研发,同时也是《Kubernetes权威指南》作者之一。

本文转自d1net(转载)

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3月前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1738 10
|
6月前
|
运维 Kubernetes Cloud Native
智联招聘 × 阿里云 ACK One:云端弹性算力颠覆传统 IDC 架构,打造春招技术新范式
在 2025 年春季招聘季的激战中,智联招聘凭借阿里云 ACK One 注册集群与弹性 ACS 算力的深度融合,成功突破传统 IDC 机房的算力瓶颈,以云上弹性架构支撑千万级用户的高并发访问,实现招聘服务效率与稳定性的双重跃升。
|
3月前
|
监控 Kubernetes Java
使用 New Relic APM 和 Kubernetes Metrics 监控 EKS 上的 Java 微服务
在阿里云AKS上运行Java微服务常遇性能瓶颈与OOMKilled等问题。本文教你通过New Relic实现集群与JVM双层监控,集成Helm部署、JVM代理注入、GC调优及告警仪表盘,打通从节点资源到应用内存的全链路观测,提升排障效率,保障服务稳定。
236 2
|
8月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
9月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
9月前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。
|
10月前
|
Kubernetes 监控 Serverless
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
|
10月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
10月前
|
监控 Cloud Native Java
基于阿里云容器服务(ACK)的微服务架构设计与实践
本文介绍如何利用阿里云容器服务Kubernetes版(ACK)构建高可用、可扩展的微服务架构。通过电商平台案例,展示基于Java(Spring Boot)、Docker、Nacos等技术的开发、容器化、部署流程,涵盖服务注册、API网关、监控日志及性能优化实践,帮助企业实现云原生转型。

热门文章

最新文章

推荐镜像

更多