名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA(2)

简介: 名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA

YOLO 不同版本之间的对比

相比于之前的 YOLO 系列,YOLOv8 模型似乎表现得更好,不仅领先于 YOLOv5,YOLOv8 也领先于 YOLOv7 和 YOLOv6 版本。

YOLOv8 与其他 YOLO 模型的对比。

在与 640 图像分辨率下训练的 YOLO 模型相比,所有 YOLOv8 模型在参数数量相似的情况下都具有更好的吞吐量。

接下来我们详细了解一下最新的 YOLOv8 模型与 Ultralytics 的 YOLOv5 模型的性能比较。

YOLOv8 和 YOLOv5 之间的综合比较

YOLOv8 和 YOLOv5 目标检测模型对比

YOLOv8 和 YOLOv5 实例分割模型对比

YOLOv8 和 YOLOv5 图像分类模型对比


很明显,除了一个分类模型之外,最新的 YOLOv8 模型比 YOLOv5 要好得多。

由此看来,随着 YOLOv8 的发布,其在计算机视觉领域的重要性不言而喻,目标检测、图像分割以及图像分类任务都将达到新的水平。

参考链接:https://learnopencv.com/ultralytics-yolov8/https://blog.roboflow.com/whats-new-in-yolov8/https://github.com/ultralytics/ultralytics

相关文章
|
应用服务中间件 API nginx
一个超长时间的http api 的 nginx 超时错误 java.io.IOException: unexpected end of stream on Connection
一个长时间的http api 的 nginx 超时错误 直接访问IP是OK的。但是经过了中间一台域名机子,配置了nginx (基本上所有的超时时间timeout配置项都配置了足够的时间)的proxy_pass到这个IP上。
7776 0
|
3月前
|
人工智能 数据可视化 机器人
零基础搭建AI应用:Coze与Dify对比指南
Coze和Dify是当前主流的AI应用开发平台,两者定位和特点差异显著。Coze适合快速搭建聊天机器人,尤其适合非技术人员和需要快速集成的场景;Dify则更侧重高度定制和企业级需求,支持私有部署和复杂工作流。选择时应根据项目需求、技术能力及数据控制要求综合考虑,没有绝对优劣,关键看是否契合实际场景。
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】
本项目基于YOLOv8构建了一个支持无人机航拍图像的棕榈树目标检测系统,兼具高精度识别能力与友好的图形化交互界面。通过结合PyQt5,实现了图片、视频、摄像头等多种输入方式的检测体验,极大提升了项目的实用性与可扩展性。
基于YOLOv8的无人机航拍树木目标检测系统|精准识别【含完整训练源码+部署教程】
|
算法 计算机视觉 开发者
YOLOv10发布,性能效率双提升,魔搭社区最佳实践来啦!
YOLO(You Only Look Once)系列目标检测框架,由于其在计算成本与检测性能之间实现了有效平衡,故而成为实时物体检测领域的标杆。
|
人工智能 自然语言处理 搜索推荐
解读阿里云搜索开发工作台如何快速搭建AI语义搜索及RAG链路
本文介绍阿里云搜索开发工作台如何通过内置数据处理、查询分析、排序、效果测评、大模型等服务,结合阿里云搜索引擎及开源引擎,灵活打造AI语义搜索及RAG链路。
20464 15
|
安全 网络协议 网络安全
【HTTPS】对称加密和非对称加密
【HTTPS】对称加密和非对称加密
262 0
|
存储 编解码 API
名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA(1)
名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA
783 0
名声大噪的YOLO迎来YOLOv8,迅速包揽目标检测、实例分割新SOTA(1)
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
基于YOLOv8深度学习的吸烟/抽烟行为检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
|
存储 缓存 关系型数据库
MySQL有哪些存储引擎,各自的优缺点,应用场景
经常面试都会问到MYSQL有哪些存储引擎,以及各自的优缺点。今天主要分享常见的存储引擎:MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)等,以及最常用的MyISAM与InnoDB两个引擎 ,文章尾部有两者的详细比较。
2561 0
|
机器学习/深度学习 PyTorch 算法框架/工具
机器学习框架PyTorch详解和案列分析
PyTorch 是一个基于 Python 的机器学习框架,由 Facebook 于 2016 年发布。它提供了一组灵活且高效的工具,可用于构建和训练各种深度学习模型。PyTorch 的核心组件是张量,它是一个多维数组,可以用于存储和处理数据。PyTorch 的张量与 NumPy 的数组类似,但也提供了 GPU 加速和自动微分等功能。PyTorch 使用动态计算图,这意味着在运行时可以修改计算图,从而允许更灵活的模型构建和调试。这与 TensorFlow 等框架的静态计算图不同。PyTorch 支持自动微分,可以方便地计算张量的梯度。这为构建和训练深度学习模型提供了便利。PyTorch 提供了构
774 0