回顾60多种transformer研究,一文总结遥感领域最新进展(1)

简介: 回顾60多种transformer研究,一文总结遥感领域最新进展

过去十年,基于深度学习的算法在遥感图像分析中得到广泛应用。最初引入到 NLP 领域的 transformer 已经渗透到计算机视觉领域。遥感社区也是如此,他们见证了视觉 transformer 用于各种任务的增加。不过,到目前为止许多调查都集中在计算机视觉中的 transformer,而关于遥感方面的调查却很少。本文系统回顾了遥感中使用基于 transformer 的最新进展,多达 60 多种方法,这些方法可用于解决遥感子领域中不同的遥感问题:超高分辨率 (VHR)、高光谱 (HSI) 和合成孔径雷达 (SAR) 图像。


遥感成像技术在过去几十年取得显着进步。现代机载传感器在空间、光谱和分辨率上的不断提升,已经能覆盖地球表面大部分范围,因此遥感技术在生态学、环境科学、土壤科学、水污染、冰川学、土地测量和分析等众多研究领域发挥着至关重要的作用。由于遥感数据通常是多模态的、位于地理空间(地理定位)中,并且尺度通常是全球范围、数据规模也在不断增长等等,这些特性都为遥感成像的自动分析带来独特的挑战。


计算机视觉的许多领域中,如对象识别、检测和分割等等,深度学习尤其是卷积神经网络 (CNN) 已经是主流。卷积神经网络通常将 RGB 图像作为输入并执行一系列卷积、局部归一化和池化操作。CNN 通常依赖于大量的训练数据,然后将生成的预训练模型用作各种下游应用的通用特征提取器。基于深度学习的计算机视觉技术的成功也启发了遥感界,并且在许多遥感任务中取得重大进展,如高光谱图像分类、变化检测和超高分辨率卫星实例分割。


CNN 主要基础之一是卷积运算,它捕捉输入图像中元素(如轮廓和边缘信息)之间的局部交互。CNN 对空间连通性和平移等效性等偏差进行编码,这些特征有助于构建通用高效的架构。CNN 中的局部感受野限制了对图像中的远距离依赖关系(如远距离部分间的关系)的建模。卷积是与内容无关的,因为卷积滤波器的权重是固定的,无论其性质如何,都将相同的权重应用于所有输入。视觉 transfomer (ViTs) 在计算机视觉的各种任务中展示了令人印象深刻的性能。ViT 基于 self-attention 机制,通过学习序列元素之间的关系有效地捕捉全局交互。最近的研究表明,ViT 具有依赖于内容的远程交互建模能力,并且可以灵活地调整其感受野以对抗数据中的干扰并学习有效的特征表示。因此,ViT 及其变体已成功用于许多计算机视觉任务,包括分类、检测和分割。


ViT 在计算机视觉领域的成功,遥感分析中使用基于 transformer 框架的的任务显着增长(见图 1),像超高分辨率图像分类、变化检测、全色锐化 ,建筑物检测和图像字幕都有 transformer 的身影。这开启遥感分析的新纪元,研究者采用各种不同的方法,如利用 ImageNet 预训练或使用视觉 transformer 执行遥感预训练。


类似地,相关文献中也有基于纯 transformer 设计或利用基于 transformer 和 CNN 的混合方法的方法。由于针对不同遥感问题的基于 transformer 的方法的迅速涌现,跟上最新的进展变得越来越具有挑战性。


在文章中,作者回顾遥感分析领域取得的进展,并介绍在遥感领域中流行的基于 transformer 的方法,文章主要贡献如下:


对基于 transformer 的模型在遥感成像中的应用进行整体概述,并且作者是第一个对遥感分析中使用 transformer 进行调研的,弥合了计算机视觉和遥感在这个快速发展和受欢迎的领域的最新进展之间的差距。


  • 对 CNN 和 Transformer 进行概述,讨论它们各自的优缺点。
  • 回顾文献中 60 多种基于 transformer 的研究工作,讨论遥感领域的最新进展。
  • 探讨遥感分析中 transformer 的不同挑战和研究方向。


文章的其余部分安排:第 2 节讨论有关遥感成像的其他相关调研;第 3 节概述遥感中不同的成像模式;第 4 节简要概述 CNN 和视觉 transformer;第 5 节回顾超高分辨率 (VHR) 成像;第 6 节介绍高光谱图像分析;第 7 节介绍合成孔径雷达(SAR)中基于 transformer 的方法进展;第 8 节讨论未来研究方向。


更多细节请参考原论文。


相关文章
|
SQL 安全 Windows
SQL安装程序规则错误解析与解决方案
在安装SQL Server时,用户可能会遇到安装程序规则错误的问题,这些错误通常与系统配置、权限设置、依赖项缺失或版本不兼容等因素有关
|
XML 前端开发 Java
怎样将MultipartFile和File互转
该文介绍了如何在Java开发中优雅地转换MultipartFile和File。MultipartFile是Spring框架用于接收上传文件的类,而File是操作系统文件的代表。文章提供了三种将MultipartFile转换为File的方法:使用`transferTo`方法、FileOutputStream和Java NIO。另外,还介绍了在测试场景下将File转换为MultipartFile,通过MockMultipartFile实现。
1481 1
|
9月前
|
算法 前端开发 定位技术
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
685 1
|
Java API 数据库
【神操作!】Spring Boot打造RESTful API:从零到英雄,只需这几步,让你的Web应用瞬间飞起来!
【8月更文挑战第12天】构建RESTful API是现代Web开发的关键技术之一。Spring Boot因其实现简便且功能强大而深受开发者喜爱。本文以在线图书管理系统为例,展示了如何利用Spring Boot快速构建RESTful API。从项目初始化、实体定义到业务逻辑处理和服务接口实现,一步步引导读者完成API的搭建。通过集成JPA进行数据库操作,以及使用控制器类暴露HTTP端点,最终实现了书籍信息的增删查改功能。此过程不仅高效直观,而且易于维护和扩展。
320 1
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之有5个并行度,但只有其中1个并行度有数据,是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
JavaScript Java 测试技术
基于SpringBoot+Vue+uniapp的量化积分管理系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue+uniapp的量化积分管理系统的详细设计和实现(源码+lw+部署文档+讲解等)
211 0
|
Java fastjson
Java将Map转换为实体类
Java将Map转换为实体类
598 0
|
Web App开发 前端开发 Java
Netty-SocketIO:最好用的Java版即时消息推送
版权声明:欢迎转载,请注明沉默王二原创。 https://blog.csdn.net/qing_gee/article/details/52525677 Netty-SocketIO是一个开源的、基于Netty的、Java版的即时消息推送项目。
8434 1
|
云安全 安全 云计算
云安全的应用与合规性:构建安全可靠的云应用和满足合规性要求
本篇深入探讨了在云环境中构建安全可靠的应用和满足合规性要求的重要性。我们首先介绍了安全的软件开发生命周期(SDLC),强调了在需求分析、设计、编码、测试、部署和运维阶段嵌入安全性的关键步骤。示例代码展示了如何在每个阶段融入安全实践。
643 1
云安全的应用与合规性:构建安全可靠的云应用和满足合规性要求
|
敏捷开发 开发框架 架构师
敏捷开发发展和优缺点 1
敏捷开发发展和优缺点
652 0