AI挑战国际数学奥林匹克竞赛,Meta神经定理证明器拿到多项SOTA

简介: AI挑战国际数学奥林匹克竞赛,Meta神经定理证明器拿到多项SOTA


Meta AI构建了一个神经定理证明器HyperTree Proof Search(HTPS),已经解决了 10 场国际数学奥林匹克竞赛 (IMO) 中的数学问题。


数学定理证明一直被视为构建智能机器的关键能力。证明一个特定的猜想是真是假,需要使用符号推理等数学知识,比简单的识别、分类等任务要难得多。


近日,Meta AI 构建了一个神经定理证明器 HyperTree Proof Search(HTPS),已经解决了 10 场国际数学奥林匹克竞赛 (IMO) 中的问题,比以往任何系统都更多。此外,该 AI 模型的性能比数学基准 miniF2F 上的 SOTA 方法高出 20%,比 Metamath 基准上的 SOTA 方法高出 10%。



论文地址:https://arxiv.org/pdf/2205.11491.pdf

在一定意义上,定理证明要比构建 AI 来玩国际象棋等棋盘游戏更具挑战性。当研究者试图证明一个定理时,可能移动的动作空间不仅很大而且有可能是无限的。相比较而言,在国际象棋或围棋中,这些游戏的一系列走法会被预测出来,即使算法没有给出最好的走法也影响不大。而在定理证明中,当算法走入死胡同就没办法解决了,性能再好的求解器也只是白费力气。Meta AI的新方法解决了这个棘手的问题,LeCun也转推称赞。



我们用一个例子来说明 HTPS 的优势:假设 a 和 b 都是质因子为 7 的自然数,并且 7 也是 a + b 的质因子,如果假设 7^7 可以整除(a + b)^7 - a^7 - b^7,那么请证明 a + b 至少是 19。


假如让人类来证明的话,他们大概率会用到二项式。而 HTPS 使用 Contraposition 方法,大大简化了方程,然后再检查多种不同的情况。


contrapose h₄,

 

simp only [nat.dvd_iff_mod_eq_zero, nat.add_zero] at *,

 

norm_num [nat.mod_eq_of_lt, mul_comm, nat.add_mod] at h₄,


如下图为本文模型发现的证明示例,即在 miniF2F 中另一个 IMO 问题的证明:



更接近人类的推理


为了使用计算机编写正式的数学证明过程,数学家最常用的方法是交互式定理证明器(ITP)。下图 1 是交互式定理证明器 Lean 中的一个证明示例:



相应的证明树如下:


给定一个要自动证明的主要目标 g,证明搜索与学习模型和定理证明环境交互以找到 g 的证明超树。证明搜索从 g 开始逐渐扩展出一个超图。当存在从根到叶子均为空集的超树时,即为证明完成。


以下图 5 证明过程为例,假设策略模型 P_θ 和批评模型 c_θ,以目标为条件,策略模型允许对策略进行抽样,而批评模型估计为该目标找到证明的能力,整个 HTPS 的证明搜索算法以这两个模型为指导。此外,与 MCTS 类似,HTPS 存储访问计数 N(g, t)(在节点 g 处选择策略 t 的次数)和每个策略 t 针对目标 g 的总动作(action)值 W(g, t)。这些统计数据将用于选择阶段。



HTPS 算法迭代地重复图 5 描述的选择、扩展、反向传播三个步骤来增长超图,直到找到证明或者超出扩展预算。

Meta 在三个定理证明环境中开发和测试 HTPS:a)Metamath,b)Lean 和 c)Metamath。Metamath 附带一个名为 set.mm 的数据库,其中包含 30k 个人类编写的定理。Lean 附带一个由人类编写的 27k 定理库,称为 Mathlib。最后,由于 Metamath 证明非常难以理解,因而 Meta 开发了自己的环境,称为 Equations,仅限于数学恒等式的证明。


为了模仿人类思维,神经定理证明器需要将特定状态和当前状态(对问题的理解)联系起来。Meta 首先从强化学习开始,该方法与现有的证明助手(proving assistants,例如 Lean)紧密结合。

Meta 将证明的当前状态解释为图中的一个节点,并将每一个新步骤解释为一条边。此外,研究者意识到还需要一种方法来评估证明状态的质量——类似于在棋盘游戏中 AI 需要评估游戏中的特定位置。


受蒙特卡洛树搜索 (MCTS) 启发,Meta 采用在两个任务之间进行循环:在给定证明状态下使用的合理参数的先验估计;给定一定数量的参数后的证明结果。


HTPS 是标准 MCTS 方法的变体,在该方法中,为了探索图,Meta 利用关于图的先验知识来选择一组叶进行展开,然后通过备份修正来改进初始知识。图是逐步探索的,关于图结构的知识随着迭代得到细化。


实验


每个实验都在单一环境(例如 Lean、Metamath 或 Equations)上运行,并将模型与 GPT-f 进行比较,它代表了 Metamath 和 Lean 的最新技术。



在 Lean 中,该研究在 A100 GPU 上使用 32 个训练器和 200 个证明器进行实验。经过 1 天的训练(即 (200 + 32) A100 天的计算),miniF2F 中的每个状态(statement)平均被采样 250 次,在 327 个状态中已经有 110 个被解决。本文的模型在 miniF2F-test 中优于 GPT-f,具有大约 10 倍的训练时间加速。


在 Metamath 中,该研究在 V100 GPU 上训练模型,使用 128 个训练器和 256 个证明器,表 3 报告了监督模型和在线训练模型的结果。


在 Equations 中,该研究使用 32 个训练器和 64 个证明器进行实验,在这种环境下,模型很容易学习随机生成器的训练分布,并解决所有综合生成的问题。


参考链接:https://ai.facebook.com/blog/ai-math-theorem-proving/


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
2月前
|
人工智能 缓存 并行计算
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
272 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
334 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
7月前
|
存储 人工智能 关系型数据库
4年10亿美金,Neon用Serverless PG证明:AI需要的不是“大”,而是“隐形”
AnalyticDB PostgreSQL 版基于Neon架构隆重推出满足 AI 时代应用开发需求的Serverless版本,并且在这之上搭载了结构化分析、向量检索、BM25全文检索和图检索,通过一套引擎满足 AI 应用丰富的数据诉求,支持MCP和OpenAI协议,为企业全面拥抱 AI 配备了数据存储、分析和应用的 “关键” 能力,帮助企业火箭式启动跑赢时代。
|
3月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。
|
5月前
|
机器学习/深度学习 人工智能 机器人
Meta AI Research:虚拟/可穿戴/机器人三位一体的AI进化路径
本文阐述了我们对具身AI代理的研究——这些代理以视觉、虚拟或物理形式存在,使其能够与用户及环境互动。这些代理包括虚拟化身、可穿戴设备和机器人,旨在感知、学习并在其周围环境中采取行动。与非具身代理相比,这种特性使它们更接近人类的学习与环境交互方式。我们认为,世界模型的构建是具身AI代理推理与规划的核心,这使代理能够理解并预测环境、解析用户意图及社会背景,从而增强其自主完成复杂任务的能力。世界建模涵盖多模态感知的整合、通过推理进行行动规划与控制,以及记忆机制,以形成对物理世界的全面认知。除物理世界外,我们还提出需学习用户的心理世界模型,以优化人机协作。
427 3
|
6月前
|
机器学习/深度学习 人工智能 API
基于昇腾适配Meta AI在Science正刊发表的蛋白质结构预测模型ESMFold
ESMFold是由Meta AI团队开发的一种基于深度学习的高效蛋白质结构预测模型,其核心目标是利用大规模蛋白质语言模型(ESM)直接从氨基酸序列快速推断蛋白质的三维结构。ESMFold通过预训练的语言模型捕捉序列中的进化与结构关联性,结合几何优化模块生成高精度原子坐标,显著降低了传统方法对多重序列比对(MSA)和模板依赖的计算成本。该模型在蛋白质从头预测(de novo prediction)、功能位点解析、突变效应模拟等领域具有重要价值,以高效的推理性能,推动结构预测技术的普惠化应用。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
这个模型让AI角色会说话还会演!MoCha:Meta联手滑铁卢大学打造对话角色视频生成黑科技
MoCha是由Meta与滑铁卢大学联合开发的端到端对话角色视频生成模型,通过创新的语音-视频窗口注意力机制实现精准的唇语同步和全身动作生成。
493 12
这个模型让AI角色会说话还会演!MoCha:Meta联手滑铁卢大学打造对话角色视频生成黑科技
|
12月前
|
机器学习/深度学习 人工智能 算法
UCLA、MIT数学家推翻39年经典数学猜想!AI证明卡在99.99%,人类最终证伪
近日,加州大学洛杉矶分校和麻省理工学院的数学家团队成功推翻了存在39年的“上下铺猜想”(Bunkbed Conjecture),该猜想由1985年提出,涉及图论中顶点路径问题。尽管AI在研究中发挥了重要作用,但最终未能完成证明。人类数学家通过深入分析与创新思维,找到了推翻猜想的关键证据,展示了人类智慧在数学证明中的不可替代性。成果发表于arXiv,引发了关于AI在数学领域作用的广泛讨论。
378 89