大视觉模型方向,计算机视觉顶尖期刊 IJCV 特刊征稿

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 大视觉模型方向,计算机视觉顶尖期刊 IJCV 特刊征稿

Call for Papers

International Journal of Computer Vision (IJCV)

Special Issue on The Promises and Dangers of Large Vision Models


在过去十年里,深度学习彻底颠覆了计算机视觉领域,在许多视觉计算问题上带来了巨大的突破。最近我们观察到另一种趋势在社区里受到了广泛的关注和研究,即视觉模型的扩展,从长远来看可能会对该领域产生重大的影响。


具体来说,视觉模型的大小从几千万参数成倍增长到几亿,甚至几十亿,尤其是在 Vision Transformer 出现之后。此外,训练数据的规模和多样性也随着模型容量的增长而急剧增加,不仅表现在数量上,也表现在形式上(例如结合图像和语言)。在这里,为了简洁起见,我们将此类模型称为大视觉模型 (Large Vision Models or LVMs),其中包括单模态视觉模型和多模态视觉模型(例如视觉语言模型)。


一方面,从大规模数据中学习的 LVMs 在泛化方面表现出强大的能力:它们可以应对广泛的领域或场景,并且可以轻易适应多种视觉任务,例如图像分类 / 字幕 / 分割、对象 / 关键点检测和深度 / 表面法线估计。此外,多模态 LVMs 还为众多下游零样本推理应用带来了机会,例如开放词汇分类 / 检测 / 分割和图像编辑 / 生成。


另一方面,LVMs 带来了社区需要解决的挑战和风险:训练成本高昂且对环境产生负面影响;LVMs 太大而无法在下游数据集上进行微调;网络数据分布不均可能导致社会偏见(性别和种族)和不平等;LVMs 的常识推理能力仍然落后;等等。


本期特刊寻求对推进 LVMs 的原创性贡献——在开发、评估、适应、应用、理解等方面——并解决 LVMs 所带来的潜在负面影响。其内容应与以下范畴有关(但不限于):


  • Training or adaptation methods for LVMs
  • LVM architecture designs (not limited to Transformer-based models)
  • Visualizing and interpreting LVMs
  • Emergent capabilities of LVMs
  • Applications and use cases of LVMs in computer vision
  • Theoretical insights into LVMs
  • Generalization and robustness of LVMs
  • Evaluation, biases, fairness, and safety of LVMs


重点日期:


  • Full paper submission deadline: March 1st, 2023
  • Review deadline: April 30th, 2023
  • Author response deadline: May 26th, 2023
  • Final notification: June 26th, 2023
  • Final manuscript submission: July 26th, 2023


客座编辑:


  • Kaiyang Zhou, Nanyang Technological University, Singapore
  • Ziwei Liu, Nanyang Technological University, Singapore
  • Xiaohua Zhai, Google Brain, Switzerland
  • Chunyuan Li, Microsoft Research, Redmond, US
  • Kate Saenko, Boston University, US


详情请访问以下网页:https://kaiyangzhou.github.io/assets/cfp_ijcv_lvms.html


相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
613 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
3月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
3月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
4月前
|
机器学习/深度学习 人工智能 监控
探索视觉AI:超越计算机视觉的边界
【8月更文挑战第20天】
63 2
|
5月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
221 11
|
6月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
147 8
|
7月前
|
机器学习/深度学习 编解码 人工智能
Vision Mamba:将Mamba应用于计算机视觉任务的新模型
Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”
668 7
|
7月前
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
636 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
66 1
|
5月前
|
机器学习/深度学习 人工智能 固态存储
深度学习在计算机视觉中的应用:重塑视觉感知的未来
【7月更文挑战第1天】深度学习重塑计算机视觉未来:本文探讨了深度学习如何革新CV领域,核心涉及CNN、RNN和自注意力机制。应用包括目标检测(YOLO、SSD等)、图像分类(VGG、ResNet等)、人脸识别及医学影像分析。未来趋势包括多模态融合、语义理解、强化学习和模型可解释性,推动CV向更高智能和可靠性发展。

热门文章

最新文章