超低功耗AI芯片:神经脉冲只需同类神经网络能量的0.02%

简介: 超低功耗AI芯片:神经脉冲只需同类神经网络能量的0.02%
这种人工智能芯片达到了新的超低功耗。


人类大脑并不是很大,却承载着所有的计算任务。出于这一原因,许多研究者开始对创建模拟大脑神经信号处理的人工网络感兴趣。这种人工网络被称为脉冲神经网络(spiking neural networks, SNN)。

脉冲神经网络最早由 Maass 教授于 1997 年提出,它是基于大脑运行机制的新一代人工神经网络,被誉为第三代神经网络模型。它是目前最接近类脑计算水平的一类生物启发模型,具有可处理生物激励信号以及解释大脑复杂智能行为的优势。

SNN 旨在弥合神经科学和机器学习之间的差距,使用最拟合生物神经元机制的模型来进行计算,它与目前流行的神经网络和机器学习方法有着根本上的不同。

SNN 使用脉冲,这是一种发生在时间点上的离散事件,而非常见的连续值。每个峰值由代表生物过程的微分方程表示出来,其中最重要的是神经元的膜电位。本质上,一旦神经元达到了某一电位,脉冲就会出现,随后达到电位的神经元会被重置。

然而,大脑有 1000 亿个微小神经元,每个神经元通过突触与其他 10000 个神经元相连,这些神经元通过协调的电峰值模式来表示信息。事实证明,在一个紧凑的设备上使用硬件来模拟这些神经元,同时还要确保以一种节能的方式进行计算,非常具有挑战性。

在最近的一项研究中,来自孟买理工学院的研究者实现了超低功耗人工神经元,允许 SNN 排列更紧凑。

论文地址:https://ieeexplore.ieee.org/document/9782075

新研究实现 5000 倍的每个脉冲能量降低

就像大脑中的神经元,超出能量阈值会出现脉冲信号,SNN 依赖于人工神经网络,其中电流源为 leaky 电容器充电,直到达到阈值水平,人工神经元 fires,之后存储的电量重置为零 。然而,现有的 SNN 需要大的晶体管电流来为其电容器充电,这导致了高功耗,以及人工神经元 fire 过快。

在该研究中,孟买理工学院的 Udayan Ganguly 教授和他的同事合作创造了一种 SNN,这种 SNN 依赖于一种新的、紧凑的电流源来为电容器充电,这种电流源被称为 BTBT( band-to-band-tunneling current)。

在 BTBT 中,量子隧穿电流以极低的电流使电容器充电,这意味着所需的能量更少。BTBT 方法还省去了用较大电容来存储大量的电流,为芯片上更小的电容铺平了道路,从而节省了空间。

研究人员使用 45 纳米商用绝缘硅片晶体管技术对 BTBT 神经元方法进行测试,结果显示这种方法节省了大量的能源和空间。同时,他们宣布了一种新的低功耗 AI 芯片,它可以实现所谓的脉冲神经网络。

孟买理工学院研究者,包括 Maryam Shojaei Baghini(左一) 和 Udayan Ganguly(右一) 教授

与在硬件脉冲神经网络中实现的 SOTA [人工] 神经元相比,该研究在相似区域实现了 5000 倍的每个脉冲能量降低,并且在相似的区域和每个脉冲的能量降低了 10 倍,Ganguly 解释。

研究人员将 SNN 应用于语音识别模型,该模型使用 20 个人工神经元作为初始输入编码,还额外使用了 36 个人工神经元,该模型能够有效的识别口语,从而验证了该方法在现实世界中的可行性。

这项技术适用于语音活动检测、语音分类、运动模式识别、导航、生物医学信号、分类等等。虽然这些应用程序可以通过当前的服务器和超级计算机完成,但 SNN 可以使这些应用程序与边缘设备一起使用,比如手机和物联网传感器,尤其是在能源紧张的情况下。

Ganguly 表示,他的团队已经展示了 BTBT 方法对特定应用程序(例如关键字检测)有用,他们的目标是创建一个极低功耗的神经突触核心,并开发一种实时片上学习机制,这一技术是实现自主仿生神经网络的关键。

参考链接:https://spectrum.ieee.org/low-power-ai-spiking-neural-nethttps://jishuin.proginn.com/p/763bfbd6cfac

相关文章
|
2月前
|
人工智能 安全 算法
利用AI技术提升网络安全防御能力
【10月更文挑战第42天】随着人工智能技术的不断发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防御能力,包括异常行为检测、恶意软件识别以及网络攻击预测等方面。通过实际案例和代码示例,我们将展示AI技术在网络安全防御中的潜力和优势。
|
2月前
|
人工智能 运维 物联网
AI在蜂窝网络中的应用前景
AI在蜂窝网络中的应用前景
63 3
|
3月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
79 2
|
18天前
|
数据采集 人工智能 自然语言处理
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
FireCrawl 是一款开源的 AI 网络爬虫工具,专为处理动态网页内容、自动爬取网站及子页面而设计,支持多种数据提取和输出格式。
91 18
FireCrawl:开源 AI 网络爬虫工具,自动爬取网站及子页面内容,预处理为结构化数据
|
28天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
113 13
|
1月前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
100 12
|
1月前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
4月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
197 73
|
2月前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
2月前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
109 3