DAPP/LP/IPPswap孵化器系统开发详情逻辑,LP/DAPP/IPPswap孵化器开发源码运营版

简介:   dapp的开发包含以下几个方面:区块链、智能合约、前端和后端。其中,智能合约是dapp的核心,是dapp上运行的逻辑代码,它定义了dapp的规则、功能和操作。开发dapp需要先选择一种区块链平台(如以太坊、EOS、TRON等),然后编写智能合约,最后使用前端和后端技术构建dapp的用户界面和交互功能。

  dapp的开发包含以下几个方面:区块链、智能合约、前端和后端。其中,智能合约是dapp的核心,是dapp上运行的逻辑代码,它定义了dapp的规则、功能和操作。开发dapp需要先选择一种区块链平台(如以太坊、EOS、TRON等),然后编写智能合约,最后使用前端和后端技术构建dapp的用户界面和交互功能。

  智能合约的编写语言包括Solidity、Vyper、Serpent等,其中以Solidity最为广泛应用。编写智能合约需要熟练掌握编程语言、数据结构、算法等基础知识,同时需要遵循一些开发规范,如安全、可靠、易读等。

  Calculation power dividend mechanism

  The basis for computing power dividends is for users to pledge their computing power to the IPPswap incubator.The IPPsswap incubator will automatically calculate the user's computing power contribution

  IPP token reward and send it to the user's wallet address.

  Specifically,the computing power dividend mechanism will be implemented according to the following steps:

  Users pledge their computing power to the smart contract of the IPPsswap incubator.

  The IPPsswap incubator will automatically record users'computing power contributions and store them in smart contracts.

  The IPPsswap incubator will calculate the user's IPP token reward based on their computing power contribution and automatically send it to the user's wallet address.

  Users can withdraw their computing power pledge at any time,but once withdrawn,they will no longer enjoy the bonus of computing power dividends

  pragma solidity=0.5.16;

  import'./interfaces/IUniswapV2Pair.sol';

  import'./UniswapV2ERC20.sol';

  import'./libraries/Math.sol';

  import'./libraries/UQ112x112.sol';

  import'./interfaces/IERC20.sol';

  import'./interfaces/IUniswapV2Factory.sol';

  import'./interfaces/IUniswapV2Callee.sol';

  contract UniswapV2Pair is IUniswapV2Pair,UniswapV2ERC20{

  using SafeMath for uint;

  using UQ112x112 for uint224;

  uint public constant MINIMUM_LIQUIDITY=10**3;

  bytes4 private constant SELECTOR=bytes4(keccak256(bytes('transfer(address,uint256)')));

  address public factory;

  address public token0;

  address public token1;

  uint112 private reserve0;//uses single storage slot,accessible via getReserves

  uint112 private reserve1;//uses single storage slot,accessible via getReserves

  uint32 private blockTimestampLast;//uses single storage slot,accessible via getReserves

  uint public price0CumulativeLast;

  uint public price1CumulativeLast;

  uint public kLast;//reserve0*reserve1,as of immediately after the most recent liquidity event

  uint private unlocked=1;

  modifier lock(){

  require(unlocked==1,'UniswapV2:LOCKED');

  unlocked=0;

  _;

  unlocked=1;

  }

  function getReserves()public view returns(uint112 _reserve0,uint112 _reserve1,uint32 _blockTimestampLast){

  _reserve0=reserve0;

  _reserve1=reserve1;

  _blockTimestampLast=blockTimestampLast;

  }

  function _safeTransfer(address token,address to,uint value)private{

  (bool success,bytes memory data)=token.call(abi.encodeWithSelector(SELECTOR,to,value));

  require(success&&(data.length==0||abi.decode(data,(bool))),'UniswapV2:TRANSFER_FAILED');

  }

  event Mint(address indexed sender,uint amount0,uint amount1);

  event Burn(address indexed sender,uint amount0,uint amount1,address indexed to);

  event Swap(

  address indexed sender,

  uint amount0In,

  uint amount1In,

  uint amount0Out,

  uint amount1Out,

  address indexed to

  );

  event Sync(uint112 reserve0,uint112 reserve1);

  constructor()public{

  factory=msg.sender;

  }

  //called once by the factory at time of deployment

  function initialize(address _token0,address _token1)external{

  require(msg.sender==factory,'UniswapV2:FORBIDDEN');//sufficient check

  token0=_token0;

  token1=_token1;

  }

  //update reserves and,on the first call per block,price accumulators

  function _update(uint balance0,uint balance1,uint112 _reserve0,uint112 _reserve1)private{

  require(balance0<=uint112(-1)&&balance1<=uint112(-1),'UniswapV2:OVERFLOW');

  uint32 blockTimestamp=uint32(block.timestamp%2**32);

  uint32 timeElapsed=blockTimestamp-blockTimestampLast;//overflow is desired

  if(timeElapsed>0&&_reserve0!=0&&_reserve1!=0){

  //*never overflows,and+overflow is desired

  price0CumulativeLast+=uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0))*timeElapsed;

  price1CumulativeLast+=uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1))*timeElapsed;

  }

  reserve0=uint112(balance0);

  reserve1=uint112(balance1);

  blockTimestampLast=blockTimestamp;

  emit Sync(reserve0,reserve1);

  }

  //if fee is on,mint liquidity equivalent to 1/6th of the growth in sqrt(k)

  function _mintFee(uint112 _reserve0,uint112 _reserve1)private returns(bool feeOn){

  address feeTo=IUniswapV2Factory(factory).feeTo();

  feeOn=feeTo!=address(0);

  uint _kLast=kLast;//gas savings

  if(feeOn){

  if(_kLast!=0){

  uint rootK=Math.sqrt(uint(_reserve0).mul(_reserve1));

  uint rootKLast=Math.sqrt(_kLast);

  if(rootK>rootKLast){

  uint numerator=totalSupply.mul(rootK.sub(rootKLast));

  uint denominator=rootK.mul(5).add(rootKLast);

  uint liquidity=numerator/denominator;

  if(liquidity>0)_mint(feeTo,liquidity);

  }

  }

  }else if(_kLast!=0){

  kLast=0;

  }

  }

  //this low-level function should be called from a contract which performs important safety checks

  function mint(address to)external lock returns(uint liquidity){

  (uint112 _reserve0,uint112 _reserve1,)=getReserves();//gas savings

  uint balance0=IERC20(token0).balanceOf(address(this));

  uint balance1=IERC20(token1).balanceOf(address(this));

  uint amount0=balance0.sub(_reserve0);

  uint amount1=balance1.sub(_reserve1);

  bool feeOn=_mintFee(_reserve0,_reserve1);

  uint _totalSupply=totalSupply;//gas savings,must be defined here since totalSupply can update in _mintFee

  if(_totalSupply==0){

  liquidity=Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);

  _mint(address(0),MINIMUM_LIQUIDITY);//permanently lock the first MINIMUM_LIQUIDITY tokens

  }else{

  liquidity=Math.min(amount0.mul(_totalSupply)/_reserve0,amount1.mul(_totalSupply)/_reserve1);

  }

相关文章
|
区块链
DAPP合约流动性模式系统开发(详情方案)|DAPP质押LP系统开发
智能合约分为广义智能合约和狭义智能合约。
|
存储 前端开发 区块链
DAPP公链质押LP项目系统开发(成熟案例)|DAPP技术
去中心化应用的开发需要考虑到它们所提供的服务的特点catch(InvocationTargetException it)
|
8月前
|
安全
DeFi/LP/DApp/Swap交易所兑换代币合约系统开发功能详细/需求设计/项目案例/运营版/源码教程
Developing a stable version of DeFi/LP/DApp/Swap exchange token exchange system requires comprehensive consideration of multiple aspects. The following are the general development steps:
|
8月前
|
存储 区块链 数据库
DAPP博饼交易质押LP项目系统开发模式案例
智能合约是用计算机语言取代法律语言去记录条款的合约,一旦编写好就可以被用户信赖
|
8月前
|
存储 安全 测试技术
DAPP|LP|DeFi质押项目系统开发细节方案
智能合约产生价值的最基本前提是有一个强有力的底层介质用于储存
|
8月前
|
存储 安全 区块链
LP博饼交易所质押项目系统开发|技术方案|详情需求
如果要修改区块链中的信息必须征得半数以上节点的同意并修改所有节点中的信息而这些节点通常掌握
|
8月前
|
存储 供应链 安全
DAPP质押LP算力池模式系统开发方案功能
智能合约的基本过程可以简单概括为部署、执行和终止。
|
算法 分布式数据库 区块链
dapp交易所质押LP项目系统开发方案模式
区块链技术被认为是互联网发明以来最具颠覆性的技术创新,它依靠密码学和数学巧妙的分布式算法
|
安全 前端开发 JavaScript
DeFi/ IDO /DAO/DAPP/LP/Swap代币兑换底池交易所项目系统开发步骤需求丨案例项目丨方案逻辑丨详细流程丨源码部署
Requirement analysis: Clarify project objectives, functional requirements, and business models. Understand the different components of the DeFi ecosystem, such as IDO (initial issuance), DAO (decentralized autonomous organization), DApp (decentralized application), LP (liquidity provider), and Swap
|
存储 安全 测试技术
dapp丨lp丨defi发行代币合约系统开发项目详细/案例分析/成熟技术/源码逻辑
  去中心化应用:区块链不仅仅是一种存储和传输数据的技术,还可以支持构建去中心化应用(DApp)。通过智能合约等技术,可以在区块链上实现自动化的、不需要中间人的应用程序。