云原生监控:Prometheus Operator,一文带你打通全流程:监控、规则、警报。

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 云原生监控:Prometheus Operator,一文带你打通全流程:监控、规则、警报。

Prometheus

  1. 安装prometheus-operator
wget https://github.com/prometheus-operator/prometheus-operator/releases/download/v0.64.0/bundle.yaml
kubectl create -f bundle.yaml
  1. 创建示例应用
apiVersion: apps/v1
kind: Deployment
metadata:
  name: example-app
spec:
  replicas: 3
  selector:
    matchLabels:
      app: example-app
  template:
    metadata:
      labels:
        app: example-app
    spec:
      containers:
      - name: example-app
        image: fabxc/instrumented_app
        ports:
        - name: web
          containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: example-app
  name: example-app
spec:
  ports:
  - name: 8080-8080
    port: 8080
    protocol: TCP
    targetPort: 8080
  selector:
    app: example-app
  type: NodePort
  1. 创建Service和Pod监控对象
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: example-app
  labels:
    team: frontend
spec:
  selector:
    matchLabels:
      app: example-app
  endpoints:
  - port: 8080-8080
---
apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
  name: example-app
  labels:
    team: frontend
spec:
  selector:
    matchLabels:
      app: example-app
  podMetricsEndpoints:
  - port: web
  1. 部署Prometheus和监控示例应用的Service和Pod

如果在K8S集群上激活了RBAC授权,则必须先创建RBAC规则,并且提前获得Prometheus服务帐户。

接下来创建服务帐户和所需的集群角色和集群角色绑定:

apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/metrics
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups: [""]
  resources:
  - configmaps
  verbs: ["get"]
- apiGroups:
  - networking.k8s.io
  resources:
  - ingresses
  verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: default
  1. 创建Prometheus对象,并定义选择监控指定标签的ServiceAccount和PodMonitor,最后暴露Prometheus
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:
  serviceAccountName: prometheus
  replicas: 3
  serviceMonitorSelector:
    matchLabels:
      team: frontend
  podMonitorSelector:
    matchLabels:
      team: frontend
  resources:
    requests:
      memory: 400Mi
  enableAdminAPI: false # 如果要开启管理API可设置为true
---
apiVersion: v1
kind: Service
metadata:
  name: prometheus
spec:
  type: NodePort
  ports:
  - name: web
    nodePort: 30900
    port: 9090
    protocol: TCP
    targetPort: web
  selector:
    prometheus: prometheus

Alertmanager

对于警报组件,Prometheus Operator引入了2个资源对象:

  • Alertmanager资源对象,它的作用是允许用户以声明的方式描述警报管理器群集。
  • AlertmanagerConfig资源对象,它的作用是允许用户以声明方式描述警报管理器配置。

先准备好警报管理器的配置,也就是创建AlertmanagerConfig资源对象。接着部署有3个副本的警报管理器集群,并使用该警报管理器的配置,最后暴露警报管理器

apiVersion: monitoring.coreos.com/v1alpha1
kind: AlertmanagerConfig
metadata:
  name: config-example
  labels:
    alertmanagerConfig: example
spec:
  route:
    groupBy: ['...']
    groupWait: 1s
    groupInterval: 1s
    repeatInterval: 1000d
    receiver: 'webhook'
  receivers:
  - name: 'webhook'
    webhookConfigs:
    - url: 'http://192.168.11.254:5001/webhook' # 接收到的警报还要往这个API发送,接收告警的API请见下面的webhook.py代码
      sendResolved: true
---
apiVersion: monitoring.coreos.com/v1
kind: Alertmanager
metadata:
  name: example
spec:
  replicas: 3
  alertmanagerConfiguration: # 此处为全局配置
    name: config-example
---
apiVersion: v1
kind: Service
metadata:
  name: alertmanager-example
spec:
  type: NodePort
  ports:
  - name: web
    nodePort: 30903
    port: 9093
    protocol: TCP
    targetPort: web
  selector:
    alertmanager: example

接收警报消息的py代码:

import json
from flask import Flask, request
app = Flask(__name__)
@app.route('/webhook', methods=['POST'])
def send():
    try:
        data = json.loads(request.data)
        print(data)
    except Exception as e:
        print(e)
    return 'finish ok ...'
if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=5001)

接收到的警报消息之所以要推给另外的接口,其目的是还可以对警报消息做进一步的处理。然后再往其它地方推送警报,比如钉钉、邮件等等。

Prometheus和Alertmanager整合

在之前创建Prometheus对象的yaml文件的基础上,拿过来改造:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:
  serviceAccountName: prometheus
  replicas: 3
  alerting: # 主要是改造这里,此处与警报管理器整合
    alertmanagers:
    - namespace: default
      name: alertmanager-example
      port: web
  serviceMonitorSelector:
    matchLabels:
      team: frontend
  podMonitorSelector:
    matchLabels:
      team: frontend
  resources:
    requests:
      memory: 400Mi
  enableAdminAPI: false
---
apiVersion: v1
kind: Service
metadata:
  name: prometheus
spec:
  type: NodePort
  ports:
  - name: web
    nodePort: 30900
    port: 9090
    protocol: TCP
    targetPort: web
  selector:
    prometheus: prometheus

整合后,在Prometheus的页面中 Status > Runtime & Build Information 下会看到已经发现到了3个警报管理器实例

如果没有成功发现,请检查配置是否正确。

Rule

规则发现机制:

  • 默认情况下,Prometheus资源仅发现在同一命名空间中的规则
  • 默认情况下,如果spec.ruleSelector字段为nil,则表示不匹配任何规则
  • 要发现所有命名空间中的规则,可以给ruleNamespaceSelector字段传空字典,例如ruleNamespaceSelector: {}
  • 若要从与特定标签匹配的所有命名空间中发现规则,可以使用matchLabels
  1. 创建警报规则
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  creationTimestamp: null
  labels:
    prometheus: example
    role: alert-rules
  name: prometheus-example-rules
spec:
  groups:
  - name: ./example.rules
    rules:
    - alert: ExampleAlert
      expr: vector(1)

出于演示的目的,这条规则始终会触发警报。方便验证是否正常工作。

  1. 开始部署Prometheus规则

之前已经将Prometheus和Alertmanageryaml进行整合,接下来,继续在这个yaml的基础上改造。

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: prometheus
spec:
  serviceAccountName: prometheus
  replicas: 3
  alerting:
    alertmanagers:
    - namespace: default
      name: alertmanager-example
      port: web
  serviceMonitorSelector:
    matchLabels:
      team: frontend
  podMonitorSelector:
    matchLabels:
      team: frontend
  resources:
    requests:
      memory: 400Mi
  enableAdminAPI: false
  ruleSelector:
    matchLabels:
      role: alert-rules
      prometheus: example
  ruleNamespaceSelector: {} # 要为PrometheusRules发现选择的命名空间。如果未指定,则仅使用与普罗米修斯对象所在的命名空间相同的命名空间。
---
apiVersion: v1
kind: Service
metadata:
  name: prometheus
spec:
  type: NodePort
  ports:
  - name: web
    nodePort: 30900
    port: 9090
    protocol: TCP
    targetPort: web
  selector:
    prometheus: prometheus

在Prometheus的页面中 Status > Rules 下会看到这条示例规则

在Alertmanager的页面中,也有了警报消息,说明警报组件已经接收到了Prometheus发送过来的警报,不过貌似时区有点不对。

综合测试

测试步骤:

  1. 修改或添加警报规则
  2. 观察Prometheus是否能发现到新的规则
  3. 警报触发后观察Alertmanager能否正常接收到警报
  4. 警报触发后观察Alertmanager能否正常推送到其它接口

测试结果截图:

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
相关文章
|
8月前
|
存储 监控 Cloud Native
|
8月前
|
Kubernetes Cloud Native 开发工具
带你读《云原生应用开发:Operator原理与实践》精品文章合集
带你读《云原生应用开发:Operator原理与实践》精品文章合集
|
8月前
|
Prometheus 监控 Kubernetes
如何用 Prometheus Operator 监控 K8s 集群外服务?
如何用 Prometheus Operator 监控 K8s 集群外服务?
|
8月前
|
Prometheus 监控 Kubernetes
Prometheus Operator 与 kube-prometheus 之二 - 如何监控 1.23+ kubeadm 集群
Prometheus Operator 与 kube-prometheus 之二 - 如何监控 1.23+ kubeadm 集群
|
14天前
|
Prometheus Cloud Native Linux
Prometheus+Grafana新手友好教程:从零开始搭建轻松掌握强大的警报系统
本文介绍了使用 Prometheus 和 Grafana 实现邮件报警的方案,包括三种主要方法:1) 使用 Prometheus 的 Alertmanager 组件;2) 使用 Grafana 的内置告警通知功能;3) 使用第三方告警组件如 OneAlert。同时,详细描述了环境准备、Grafana 安装配置及预警设置的步骤,确保用户能够成功搭建并测试邮件报警功能。通过这些配置,用户可以在系统或应用出现异常时及时收到邮件通知,保障系统的稳定运行。
63 1
|
2月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
48 3
|
6月前
|
Kubernetes Cloud Native 持续交付
云原生架构的核心组成部分通常包括容器化(如Docker)、容器编排(如Kubernetes)、微服务架构、服务网格、持续集成/持续部署(CI/CD)、自动化运维(如Prometheus监控和Grafana可视化)等。
云原生架构的核心组成部分通常包括容器化(如Docker)、容器编排(如Kubernetes)、微服务架构、服务网格、持续集成/持续部署(CI/CD)、自动化运维(如Prometheus监控和Grafana可视化)等。
|
7月前
|
存储 监控 Cloud Native
云原生日志处理流程
【6月更文挑战第14天】云原生平台中的日志处理包括9个步骤:收集、ETL、索引、存储、检索、关联、可视化、分析和报告。
|
8月前
|
存储 Prometheus 运维
【阿里云云原生专栏】云原生下的可观测性:阿里云 ARMS 与 Prometheus 集成实践
【5月更文挑战第25天】阿里云ARMS与Prometheus集成,为云原生环境的可观测性提供强大解决方案。通过集成,二者能提供全面精准的应用监控,统一管理及高效告警,助力运维人员及时应对异常。集成示例代码展示配置方式,但需注意数据准确性、监控规划等问题。这种集成将在云原生时代发挥关键作用,不断进化以优化用户体验,推动业务稳定发展。
248 0
|
8月前
|
Cloud Native 网络协议 Go
[云原生] Go web工作流程
[云原生] Go web工作流程