每日学术速递2.14

简介: 尽管最近几个两阶段的原型网络在少有的命名实体识别(NER)任务中取得了成功,但在跨度检测阶段检测出的错误跨度过大以及在类型分类阶段原型不准确和不稳定仍然是具有挑战性的问题。在本文中,我们提出了一个新颖的类型感知分解框架

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理


Subjects: cs.CL


1.Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition

adc074dc7c781444cadb88243aa9a1cc.png

标题:识别少数命名实体的类型感知分解框架

作者:Yongqi Li, Tieyun Qian

文章链接:https://arxiv.org/abs/2302.06397v1

项目代码:https://github.com/liyongqi2002/TadNER

7620441e639f7cb9d0241e9f11ee17fe.png

摘要:

       尽管最近几个两阶段的原型网络在少有的命名实体识别(NER)任务中取得了成功,但在跨度检测阶段检测出的错误跨度过大以及在类型分类阶段原型不准确和不稳定仍然是具有挑战性的问题。在本文中,我们提出了一个新颖的类型感知分解框架,即TadNER,来解决这些问题。我们首先提出了一个类型感知的跨度过滤策略,通过去除那些在语义上远离类型名称的跨度来过滤掉错误的跨度。然后,我们提出了一种类型意识的对比学习策略,通过共同利用支持样本和类型名称作为参考,构建更准确和稳定的原型。在各种基准上进行的大量实验证明,我们提出的TadNER框架产生了新的最先进的性能。

42e12a47dd072c3224f254e4ba74b589.png

d02294ec8f98e35cb687152b16157f6a.png

d04dbbfdd285c52a545535141db14d56.png

Subjects: cs.CV


2.Adjacent-level Feature Cross-Fusion with 3D CNN for Remote Sensing Image Change Detection

76e0d129b1fa0b80e4a0d06a1e3ce970.png

标题:用三维CNN进行遥感图像变化检测的相邻级特征交叉融合

作者:Yuanxin Ye, Mengmeng Wang, Liang Zhou, Guangyang Lei, Jianwei Fan, Yao Qin

文章链接:https://arxiv.org/abs/2302.05109v1

项目代码:https://github.com/wm-githuber/afcf3d-net

a315264b857249a11f29c483b654937d.png

摘要:

       近年来,利用遥感图像进行基于深度学习的变化检测受到越来越多的关注。然而,如何有效地提取和融合双时空图像的深层特征以提高变化检测的准确性仍是一个挑战。为了解决这个问题,本文提出了一种新型的具有三维卷积的邻接级特征融合网络(名为AFCF3D-Net)。首先,通过三维卷积的内部融合特性,我们设计了一种新的特征融合方式,可以同时提取和融合双时态图像的特征信息。然后,为了弥补低级特征和高级特征之间的语义差距,我们提出了相邻级特征交叉融合(AFCF)模块,以聚合相邻级之间互补的特征信息。此外,引入密集跳过连接策略,以提高像素级预测的能力和结果中变化对象的紧凑性。最后,提出的AFCF3D-Net在三个具有挑战性的遥感变化检测数据集上得到了验证。武汉建筑数据集(WHU-CD)、LEVIR建筑数据集(LEVIR-CD)和中山大学(SYSU-CD)。定量分析和定性比较的结果表明,与其他最先进的变化检测方法相比,提出的AFCF3D-Net取得了更好的性能。

ffc93fb9960598ad4244b1649a9a4052.png

73e1e93ae83db978d10062a54184ee7d.png

c5262a58bdcc2efcbfc4c3173f4f15f6.png

3.CEN-HDR: Computationally Efficient neural Network for real-time High Dynamic Range imaging

4086b699bb9054ecaa0ca66507640a80.png

标题:CEN-HDR:用于实时高动态范围成像的计算效率神经网络

作者:Steven Tel, Barthélémy Heyrman, Dominique Ginhac

文章链接:https://arxiv.org/abs/2302.05213v1

项目代码:https://github.com/steven-tel/cen-hdr

000fcec64827e7a82729fa30f088ddb7.png

摘要:

       高动态范围(HDR)成像仍然是现代数字摄影中的一项挑战性任务。最近的研究提出了提供高质量采集的解决方案,但其代价是非常多的操作和缓慢的推理时间,这使得这些解决方案无法在轻量级实时系统上实施。在本文中,我们提出了CEN-HDR,一个新的计算效率高的神经网络,通过提供一个基于光注意机制和亚像素卷积操作的新型架构,用于实时HDR成像。我们还通过使用知识蒸馏法进行网络压缩,提供了一种高效的训练方案。我们进行了广泛的定性和定量比较,表明我们的方法在图像质量方面产生了有竞争力的结果,同时比最先进的解决方案更快,使其能够在实时限制下实际部署。实验结果表明,我们的方法在Kalantari2017数据集上获得了43.04 mu-PSNR的分数,使用Macbook M1 NPU的帧速率为33 FPS。

88f4c02d63f470f63cb44fd5fbb7e9ba.png

23d762d3d96f7101553310f389146d41.png

60caaf4af5cd84bd02796fe2a35b12ad.png

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.3
最近在语言引导图像生成领域取得的突破取得了令人瞩目的成就,能够根据用户指令创建高质量和多样化的图像。尽管合成性能令人着迷,但当前图像生成模型的一个重大限制是它们在图像中生成连贯文本的能力不足,特别是对于像汉字这样的复杂字形结构。为了解决这个问题,我们引入了 GlyphDraw,这是一个通用的学习框架,旨在赋予图像生成模型生成嵌入连贯文本的图像的能力。据我们所知,这是图像合成领域第一个解决汉字生成问题的工作。
150 0
每日学术速递4.3
|
机器学习/深度学习 编解码 人工智能
每日学术速递4.28
神经辐射场 (NeRF) 在 3D 场景建模和合成高保真新颖视图方面取得了显著成功。然而,现有的基于 NeRF 的方法更侧重于充分利用图像分辨率来生成新颖的视图,而较少考虑在有限的输入分辨率下生成细节。类似于图像超分辨率的广泛使用
189 0
|
机器学习/深度学习 自然语言处理 算法
每日学术速递4.14
我们提出了 ImageReward——第一个通用的文本到图像人类偏好奖励模型——来解决生成模型中的各种普遍问题,并使它们与人类价值观和偏好保持一致。它的训练基于我们的系统注释管道,涵盖评级和排名组件,收集了迄今为止 137k 专家比较的数据集。
149 0
|
机器学习/深度学习 人工智能 自然语言处理
每日学术速递4.30
具有指令微调的大型语言模型 (LLM) 展示了卓越的生成能力。然而,这些模型是资源密集型的。为了缓解这个问题,我们探索从指令调整的 LLM 中提炼知识到更小的 LLM。为此,我们基于现有指令和新生成的指令精心开发了大量 2.58M 指令集。
122 0
|
机器学习/深度学习 编解码 自然语言处理
每日学术速递4.20
建造一个可以通过观察人类来理解和学习互动的机器人激发了几个视觉问题。然而,尽管在静态数据集上取得了一些成功的结果,但目前的模型如何直接用在机器人上仍然不清楚。在本文中,我们旨在通过以环境为中心的方式利用人类互动视频来弥合这一差距。利用人类行为的互联网视频,我们训练了一个视觉可供性模型,该模型估计人类可能在场景中的位置和方式进行交互
107 0
|
传感器 机器学习/深度学习 自然语言处理
每日学术速递2.22
时空数据挖掘在空气质量监测、人群流动建模和气候预测中发挥着重要作用。然而,由于传感器故障或传输丢失,现实场景中最初收集的时空数据通常是不完整的。时空插补旨在根据观测值及其潜在的时空依赖性来填充缺失值。
120 0
|
机器学习/深度学习 自然语言处理 安全
每日学术速递2.27
视觉知识感知问答 (Knowledge-aware question answering, KAQA) 要求模型通过知识库回答问题,这对于开放域 QA 和特定域 QA 都是必不可少的,尤其是当仅靠语言模型无法提供所需的所有知识时。尽管最近的 KAQA 系统倾向于整合来自预训练语言模型 (PLM) 的语言知识和来自知识图 (KG) 的事实知识来回答复杂问题,但在有效融合来自 PLM 和 KG 的表征方面存在瓶颈,因为(i) 它们之间的语义和分布差距,以及 (ii) 对两种模式提供的知识进行联合推理的困难。
108 0
|
机器学习/深度学习 运维 自然语言处理
每日学术速递3.3
评估面部图像的质量对于以足够的准确性操作面部识别系统至关重要。人脸质量标准化的最新进展 (ISO/IEC WD 29794-5) 建议使用组件质量测量方法将人脸质量分解为各个因素,从而为操作员重新捕获低质量图像提供有价值的反馈。
116 0
|
机器学习/深度学习 自然语言处理 数据可视化
每日学术速递4.19
最近,基于端到端变压器的检测器 (DETR) 取得了显着的性能。然而,DETRs 的高计算成本问题尚未得到有效解决,限制了它们的实际应用并阻止它们充分利用无后处理的好处,例如非最大抑制 (NMS)。在本文中,我们首先分析了现代实时目标检测器中 NMS 对推理速度的影响,并建立了端到端速度基准
163 0
|
机器学习/深度学习 自然语言处理 PyTorch
每日学术速递2.17
近年来,大型深度学习 (DL) 模型的开发有所增加,这使得训练效率变得至关重要。通常的做法是在可用性和性能之间进行权衡。一方面,诸如 PyTorch 之类的 DL 框架使用动态图来以次优模型训练性能为代价为模型开发人员提供便利。
98 0