CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理
Subjects: cs.CL
1.Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition
标题:识别少数命名实体的类型感知分解框架
作者:Yongqi Li, Tieyun Qian
文章链接:https://arxiv.org/abs/2302.06397v1
项目代码:https://github.com/liyongqi2002/TadNER
摘要:
尽管最近几个两阶段的原型网络在少有的命名实体识别(NER)任务中取得了成功,但在跨度检测阶段检测出的错误跨度过大以及在类型分类阶段原型不准确和不稳定仍然是具有挑战性的问题。在本文中,我们提出了一个新颖的类型感知分解框架,即TadNER,来解决这些问题。我们首先提出了一个类型感知的跨度过滤策略,通过去除那些在语义上远离类型名称的跨度来过滤掉错误的跨度。然后,我们提出了一种类型意识的对比学习策略,通过共同利用支持样本和类型名称作为参考,构建更准确和稳定的原型。在各种基准上进行的大量实验证明,我们提出的TadNER框架产生了新的最先进的性能。
Subjects: cs.CV
2.Adjacent-level Feature Cross-Fusion with 3D CNN for Remote Sensing Image Change Detection
标题:用三维CNN进行遥感图像变化检测的相邻级特征交叉融合
作者:Yuanxin Ye, Mengmeng Wang, Liang Zhou, Guangyang Lei, Jianwei Fan, Yao Qin
文章链接:https://arxiv.org/abs/2302.05109v1
项目代码:https://github.com/wm-githuber/afcf3d-net
摘要:
近年来,利用遥感图像进行基于深度学习的变化检测受到越来越多的关注。然而,如何有效地提取和融合双时空图像的深层特征以提高变化检测的准确性仍是一个挑战。为了解决这个问题,本文提出了一种新型的具有三维卷积的邻接级特征融合网络(名为AFCF3D-Net)。首先,通过三维卷积的内部融合特性,我们设计了一种新的特征融合方式,可以同时提取和融合双时态图像的特征信息。然后,为了弥补低级特征和高级特征之间的语义差距,我们提出了相邻级特征交叉融合(AFCF)模块,以聚合相邻级之间互补的特征信息。此外,引入密集跳过连接策略,以提高像素级预测的能力和结果中变化对象的紧凑性。最后,提出的AFCF3D-Net在三个具有挑战性的遥感变化检测数据集上得到了验证。武汉建筑数据集(WHU-CD)、LEVIR建筑数据集(LEVIR-CD)和中山大学(SYSU-CD)。定量分析和定性比较的结果表明,与其他最先进的变化检测方法相比,提出的AFCF3D-Net取得了更好的性能。
3.CEN-HDR: Computationally Efficient neural Network for real-time High Dynamic Range imaging
标题:CEN-HDR:用于实时高动态范围成像的计算效率神经网络
作者:Steven Tel, Barthélémy Heyrman, Dominique Ginhac
文章链接:https://arxiv.org/abs/2302.05213v1
项目代码:https://github.com/steven-tel/cen-hdr
摘要:
高动态范围(HDR)成像仍然是现代数字摄影中的一项挑战性任务。最近的研究提出了提供高质量采集的解决方案,但其代价是非常多的操作和缓慢的推理时间,这使得这些解决方案无法在轻量级实时系统上实施。在本文中,我们提出了CEN-HDR,一个新的计算效率高的神经网络,通过提供一个基于光注意机制和亚像素卷积操作的新型架构,用于实时HDR成像。我们还通过使用知识蒸馏法进行网络压缩,提供了一种高效的训练方案。我们进行了广泛的定性和定量比较,表明我们的方法在图像质量方面产生了有竞争力的结果,同时比最先进的解决方案更快,使其能够在实时限制下实际部署。实验结果表明,我们的方法在Kalantari2017数据集上获得了43.04 mu-PSNR的分数,使用Macbook M1 NPU的帧速率为33 FPS。