m基于NSGAII优化的WSN网络覆盖率问题matlab仿真,优化激活节点数量,网络能耗以及覆盖率

简介: m基于NSGAII优化的WSN网络覆盖率问题matlab仿真,优化激活节点数量,网络能耗以及覆盖率

1.算法仿真效果
matlab2022a仿真结果如下:

b4400f53024e5781d9a24dc3943d1f4a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
448aebc40ba39e3c7ff2581dc75e443a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c27b14b8988261364bb4bfd0f0a239de_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f8e121d3c8fdddb9fdef134d03509147_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7b13978fddb086eee5906bbb5fe3cb3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b3f6b38120dc128b834ef05be5bff851_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1a1683d2040f022c276721a4f435d42c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

  首先将一群具有多个目标的个体(解集,或者说线代里的向量形式)作为父代初始种群,在每一次迭代中,GA操作后合并父代于自带。通过非支配排序,我们将所有个体分不到不同的pareto最优前沿层次。然后根据不同层次的顺序从pareto最优前沿选择个体作为下一个种群。出于遗传算法中的“物种多样性”保护,还计算量“拥挤距离”。拥挤距离比较将算法各阶段的选择过程引向一致的前沿。    

   与单目标(遗传算法)最大的不同就是进行选择操作之前进行快速非支配排序,这一步也是为了选择操作而来的,选择哪些、怎么选是通过非快速支配排序来的。这就不像单目标,挑好的选就行了。
   支配: 在多目标优化问题中,如果个体p至少有一个目标比个体q好,而且个体p中的所有目标都不比个体q差,那么称个体p支配个体q。

  序值: 如果p支配q,那么p的序值比q低。如果p和q互不支配,那么p和q有相同的序值。

  拥挤距离:用来计算某前端中的某个体与该前端中其他个体之间的距离,用以表征个体间的拥挤程度。希望pareto解出来之后,点与点之间距离是相近的,不要太多的聚集在某个地方。用某个点与前后两个点之间的xy的距离和表示。算法会选择拥挤距离大的去领头。

 快速非支配排序:快速非支配排序就是将解集分解为不同次序的Pareto前沿的过程。将一组解分成n个集合:rank1,rank2…rankn,每个集合中所有的解都互不支配,但ranki中的任意解支配rankj中的任意解(i<j).

综上所述,NSGAII的步骤如下所示:

步骤1:编码。遗传算法在进行搜索之前,将变量编成一个定长的编码——用二进制字符串来表示,这些字符串的不同组合,
便构成了搜索空间不同的搜索点。
步骤2:产生初始群体。随机产生N个字符串,每个字符串代表一个个体。
步骤3:按目标函数的个数分割子群体,对每个子群体进行如下操作:
1)计算目标函数值(此步调用ANSYs有限元程序,将ANSYS有限元程序得到的后处理结果传给MATLAB程序作为目标函数值);
2)计算每个个体的适应度,本文中采用线性排序法和选择压差为2估算适应度;
3)用随机遍历抽样方法在每个子种群中选择个体。
步骤4:将每个子种群中选择出的个体进行合并。
步骤5:交叉操作。本文中采用的是单点交叉操作。
步骤6:变异。对个体按给定的概率进行变异,形成新一代群体。
步骤7:将步骤6产生的个体合重复进行步骤3~ 步骤6的操作,直至完成规定的遗传迭代总次数。
————————————————

优化目标1:

    网络覆盖率是衡量网络覆盖性能最重要的指标,一般定义为所有工作节点覆盖的总范围与目标区域面积大小的比值,其中传感器节点覆盖的范围取所有节点覆盖面积的并集。因此,网络覆盖率总是小于或者等于 1。

优化目标2:

节点倒数

当节点使用越少的时候,这个指标就越小

优化目标3:

网络的均衡能耗

    实际系统中,整个网络的各个节点的剩余能量是不同的,为了使得建立的新的覆盖范围的网络具有更久的使用寿命,我们必须考虑建立的优化目标的网络节点剩余能量。





3.MATLAB核心程序

      Pop_comb(1:Pop_num,1:Num_Object+N_decision_var+2)                = Pop_Gat_dist;
      [Size_x,Size_y]                                                  = size(Off_Gens);
      Pop_comb(Pop_num+1:Pop_num+Size_x,1:Num_Object+N_decision_var+2) = Off_Gens;
      %非支配排序和聚焦距离更新
      [gen_non_dominant_pop,Pop_Info] = func_non_dominant_sort(Pop_comb,Num_Object,N_decision_var);
      nsdc_pop                        = func_crowding_distance(gen_non_dominant_pop,Num_Object,N_decision_var,Pop_Info);
      %交叉变异
      [Pop_Gat_dist]   = func_gene_off(nsdc_pop,Num_Object,N_decision_var,Pop_num);
      
      %选择,交叉,变异产生下一个子代
      poolsize   = round(Pop_num/2);
      %选择锦标赛的元度
      toursize   = 2;
      select_pop = func_sel(Pop_Gat_dist,poolsize,toursize,Num_Object,N_decision_var);
      [Off_Gens,Object] = func_gene_oper(select_pop,Num_Object,N_decision_var,Pc,Pm,xmax,xmin,Para,X,Y,Pdet,r);
      t          = t+1;
      
      %保存每次迭代的优化结果
..............................................................
      end
      %Pc和Pm的自适应更新
      if t == 1
         Pc = 20;
         Pm = 20;
      else
         delta = abs(Opt_node2(t) - Opt_node2(t-1))+abs(Opt_same2(t) - Opt_same2(t-1))+abs(Opt_power2(t) - Opt_power2(t-1));
         Pc    = 20/(1+exp(-delta));
         pm    = 20/(1+exp(-delta));
      end
      %保存不同覆盖率下的覆盖节点值
      load node.mat
      Nodes(t,:) =  NODES;
 
end
相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
122 0
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
328 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
SQL 监控 安全
网络安全与信息安全:漏洞、加密与安全意识
随着互联网的迅猛发展,网络安全和信息安全问题日益受到关注。本文深入探讨了网络安全漏洞、加密技术以及提高个人和组织的安全意识的重要性。通过分析常见的网络攻击手段如缓冲区溢出、SQL注入等,揭示了计算机系统中存在的缺陷及其潜在威胁。同时,详细介绍了对称加密和非对称加密算法的原理及应用场景,强调了数字签名和数字证书在验证信息完整性中的关键作用。此外,还讨论了培养良好上网习惯、定期备份数据等提升安全意识的方法,旨在帮助读者更好地理解和应对复杂的网络安全挑战。
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
280 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
232 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
245 10
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章