用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 用Transformer定义所有ML模型,特斯拉AI总监Karpathy发推感叹AI融合趋势


特斯拉 AI 总监 Andrej Karpathy 连发多条推文表示,AI 不同领域(视觉、语音、自然语言等)正在打通,融合速度令人惊叹。


今日,特斯拉 AI 总监、Autopilot Vision 团队领导人 Andrej Karpathy 在推特上发文,对 AI 领域正在进行中的融合(consolidation)表示惊叹。

他表示,「10 年前,视觉、语音、自然语言、强化学习等都是完全分离的,甚至没有跨领域的论文。方法也完全不同,通常不是基于机器学习。」

从 2010 年开始,视觉、语言、自然语言、强化学习等领域的壁垒逐渐打破,它们开始转向同一个技术方向,即机器学习,特别是神经网络。它们使用的网络架构具有多样性,但至少论文开始读起来更加相似,基本上都用到了大型数据集和网络优化。

随着 AI 技术的发展,近两年,不同领域模型架构似乎也变得相同起来。很多研究者开始专注于 Transformer 架构,在此基础上做较小的改动以进行研究。

例如 2018 诞生的 GPT,1.17 亿参数;2019 年 GPT-2,15 亿参数;2020 年更是将其扩展到 1750 亿参数 GPT-3。Karpathy 基于 PyTorch,仅用 300 行左右的代码就写出了一个小型 GPT 训练库,并将其命名为 minGPT,这个 minGPT 能够进行加法运算和字符级的语言建模,而且准确率还不错。核心的 minGPT 库包含两个文档:mingpt/model.py 和 mingpt/trainer.py。前者包含实际的 Transformer 模型定义,大约 200 行代码,后者是一个与 GPT 无关的 PyTorch 样板文件,可用于训练该模型。

部分代码截图。

197 行完整代码:https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

随着模型架构的融合,现在,我们可以向模型输入词序列、图像 patch 序列、语音序列、强化学习序列(状态、行为、奖励)。我们可以在条件设置中添加任意 token,这种模式是极其简单、灵活的建模框架。

即使是在某个领域(如视觉)内部,过去在分类、分割、检测和生成任务上存在一些差异。但是,所有这些也正在转换为相同的框架,例如 patch 的检测 take 序列和边界框的输出序列。

现在,区别性特征主要包括以下几个方面:

1)数据2)将自身问题映射到向量序列以及从向量序列映射出自身问题的输入 / 输出规范3)位置编码器的类型以及注意力 mask 中针对特定问题的结构化稀疏模式

所以,从技术上来说,AI 领域的方方面面,包括前景、论文、人才和想法突然之间变得极其相关。每个人基本上都在使用相同的模型,大多数改进和想法可以快速地在所有 AI 领域「复制粘贴」(copy paste)。

正如其他很多人注意到并指出的那样,新大脑皮质(neocortex)在其所有的输入模态中也有一个高度统一的架构。也许自然界偶然发现了一个非常相似的强大架构,并以类似的方式复制了它,并只在一些细节上做了改变。

这种架构上的融合将使我们专注于软硬件和基础设施建设,进一步加速 AI 领域的进展。「无论如何,这是激动人心的时刻。」

对于 Andrej Karpathy 描述的 AI 融合趋势,网友也纷纷发表意见。

推特网友 @Neural Net Nail 表示,「这是一个有价值的见解。融合将加速 AI 领域的创新步伐,在边缘端使用 AI 的尖端产品变得更加可行。我想,变化(variation)才是质量的最大敌人。」

网友 @sisil mehta 也认为,「ML 基础设施迎来了激动人心的时刻。随着模型架构的融合,建模框架和基础设施也将融合。我当然希望 PyTorch Lightning 也会这样。」

网友 @Marcos Pereira 表示,「一方面,处处都在用 transformers,我们已经遇到了障碍,需要创新;另一方面,处处都在用 transformers,所以跟上来吧。」

原文出自 @Andrej Karpathy 的推特:https://twitter.com/karpathy/status/1468370605229547522

相关文章
|
5天前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
72 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
2天前
|
人工智能 新能源 调度
中国信通院栗蔚:云计算与AI加速融合,如何开启智算时代新纪元?
中国信通院栗蔚:云计算与AI加速融合,如何开启智算时代新纪元?
33 17
|
4天前
|
存储 人工智能 算法
加速推进 AI+OS 深度融合,打造最 AI 的服务器操作系统 | 2024龙蜥大会主论坛
本次方案的主题是加速推进 AI+OS 深度融合,打造最 AI 的服务器操作系统,从产业洞察、创新实践、发展建议三个方面,指出 AI 原生应用对操作系统提出更高要求,需要以应用为导向、以系统为核心进行架构创新设计,要打造最 AI 的服务器操作系统。 1. 产业洞察 2. 创新实践 3. 发展建议
|
6天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
39 7
|
2天前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
7 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
|
4天前
|
存储 Serverless 文件存储
AI 场景下,函数计算 GPU 实例模型存储最佳实践
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
11 0
|
5天前
|
存储 人工智能 OLAP
云端问道10期方案教学-百炼融合AnalyticDB,10分钟创建网站AI助手
本次分享由阿里云产品经理陈茏久介绍,主题为“百炼融合 AnalyticDB,10 分钟创建网站 AI 助手”。内容涵盖五个部分:大模型带来的行业变革、向量数据库驱动的 RAG 服务化探索、方案及优势与典型场景应用案例、产品选型配置介绍以及最新发布。重点探讨了大模型在各行业的应用,AnalyticDB 的独特优势及其在构建企业级知识库和增强检索服务中的作用。通过结合通义千问等产品,展示了如何在短时间内创建一个高效的网站 AI 助手,帮助企业快速实现智能化转型。
|
4天前
|
人工智能 运维 物联网
云大使 X 函数计算 FC 专属活动上线!享返佣,一键打造 AI 应用
如今,AI 技术已经成为推动业务创新和增长的重要力量。但对于许多企业和开发者来说,如何高效、便捷地部署和管理 AI 应用仍然是一个挑战。阿里云函数计算 FC 以其免运维的特点,大大降低了 AI 应用部署的复杂性。用户无需担心底层资源的管理和运维问题,可以专注于应用的创新和开发,并且用户可以通过一键部署功能,迅速将 AI 大模型部署到云端,实现快速上线和迭代。函数计算目前推出了多种规格的云资源优惠套餐,用户可以根据实际需求灵活选择。
|
13天前
|
机器学习/深度学习 人工智能 算法
AI在体育分析与预测中的深度应用:变革体育界的智能力量
AI在体育分析与预测中的深度应用:变革体育界的智能力量
79 31

热门文章

最新文章