蛋白质-蛋白质相互作用(PPI)在许多生物过程中都有着重要作用。在这些过程中,两个或多个蛋白质物理地结合在一起以实现其功能。建立准确的 PPI 预测模型在许多生物医学应用中都有十分重要的意义,例如疫苗设计、大分子以及多肽类药物发现等问题中都涉及蛋白质相互作用。预训练蛋白质模型来学习有效的表征对预测 PPI 来说至关重要,目前大多数的蛋白预训练模型是基于序列的,采用自然语言处理中使用的语言模型来处理氨基酸序列。PPI 问题和蛋白的结构与功能密切相关。然而,单独使用蛋白质序列很难描述蛋白质的结构和功能。这从蛋白质折叠这个问题的难度就可以看出,即使 DeepMind 提出的 AlphaFold 也需要借助多序列比对(MSA)的信息才能取得比较好的结果。
为了解决这个问题,百度借鉴自然语言处理和计算机视觉中的多模态学习,提出了一个包含三个模态:序列(Sequence)、结构(Structure)和功能(Function)的蛋白质多模态预训练模型 S2F。他们使用重原子点云的拓扑复合物来编码结构特征,这使得模型不仅可以学习骨架的结构信息,还可以学习侧链的结构信息。此外,此模型还结合了从文献或人工注释中提取的蛋白质功能描述的知识。
实验表明,S2F 学习的蛋白质嵌入在各种 PPI 任务中取得了良好的表现,包括跨物种 PPI、抗体-抗原亲和力预测、SARS-CoV-2 的抗体中和预测以及突变驱动的蛋白结合亲和力变化预测。
该工作即将在 PaddleHelix 开源,供大家使用。