大数据成为物流金融研究的新型推进利器

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

上海是全球最重要与新兴的国际金融城市之一,金融创新是这座金融城市发展的血脉和抓手所在,而物流金融更是上海金融创新中的重头戏,物流金融研究与创新也到了关键和攻坚阶段。作为肩负物流金融研究责职和重任的上海浦东国际金融学会物流金融专业委员会及其物流金融研究院,比较与纵观国内外的长短优劣,并结合国内当前的实际情况,物流金融专业委员会及物流金融研究协会负责人黄青城指出:若要推进和加快物流金融的研究和创新,必须植入类似“龙芯片”和开发新型的“工具与装备”——大数据的摄取和引入,也就是讲要现实而快速地推进物流金融研究,必须挚起大数据这把锋利之器。

日前,物流金融专业委员会及物流金融研究协会就如何推进大数据在物流金融研究中的应用等,特邀美国大数据专家彭河森博士来沪作专题演讲。彭河森结合自己在美国的研究和在亚马逊、微软工作的实际经验与切身体会,阐述以下观点:首先要选择和确定行业背景的切入,建立研究相关的(数学)模型;其次,确定数据采集与验证的方法;其三,大数据应用方式的比较,如分布式,结构式;第四,大数据应用面临的挑战与难点等等,与大家一同分享了当今大数据最前沿的新内容和新动态。可见,大数据已成为我国推动经济转型发展和供给侧改革的新手段。

彭河森指出,大数据在物流金融研究的应用中,要注意和正确理解广物流和深物流的概念,充分利用物联网、仓储设备设施等介质所提供的基础数据;尤其要重视其中的“行为数据”所担纲发挥的作用。在金融方面,要充分考虑信用信息的来源和可靠性,尤其要注意征信机构等第三方提供的相关基础数据与资料。

物流金融的深度研发,离不开大数据的强大支持。黄青城呼吁并倡议走产学研相结合的道路,即推动研究机构、物流企业、银行保险等金融机构、大专院校诸方面的链动。具体来说,可以设立物流金融大数据研究基金会与专项资金,并以不同方式,吸收国内外各类合规资金的注入,最终实现物流成本的大幅降低;同时加速金融资本对接物流相关产业,更好地推动开发创新物流金融的相关衍生品,从而助力上海金融业的创新和快速发展。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
存储 JSON 大数据
大数据离线数仓---金融审批数仓
大数据离线数仓---金融审批数仓
581 1
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
大数据与金融风控:信用评估的新标准
【10月更文挑战第31天】在数字经济时代,大数据成为金融风控的重要资源,特别是在信用评估领域。本文探讨了大数据在金融风控中的应用,包括多维度数据收集、智能数据分析、动态信用评估和个性化风控策略,以及其优势与挑战,并展望了未来的发展趋势。
|
1月前
|
数据采集 监控 算法
大数据与物流行业:智能配送的实现
【10月更文挑战第31天】在数字化时代,大数据成为物流行业转型升级的关键驱动力。本文探讨大数据如何在物流行业中实现智能配送,包括数据采集与整合、数据分析与挖掘、智能配送规划及实时监控与评估,通过案例分析展示了大数据在优化配送路线和提升物流效率方面的巨大潜力,展望了未来智能配送的高度自动化、实时性和协同化趋势。
ly~
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
137 3
|
3月前
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
4月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
200 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
4月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
97 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
4月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。
151 1
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
|
4月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
80 2
|
6月前
|
数据采集 搜索推荐 大数据
基于大数据的市场分析与消费者行为研究
【6月更文挑战第5天】大数据在市场分析与消费者行为研究中扮演关键角色。通过海量数据分析,企业能更全面、精准地了解消费者偏好和市场趋势。Python等工具帮助处理数据,揭示购买习惯,支持个性化营销策略。同时,大数据使深入理解消费者心理、决策过程成为可能,助力企业优化产品,提升客户满意度和忠诚度。在这个数据驱动的时代,大数据是洞悉市场和消费者的魔法力量。
215 2