让大模型的训练和推理,比更快还更快!谷歌2022年终总结第四弹(1)

简介: 让大模型的训练和推理,比更快还更快!谷歌2022年终总结第四弹



 新智元报道  

编辑:LRS

【新智元导读】性能不再是瓶颈,模型运行效率是问题的关键!


虽然谷歌的Bard翻车了,但谷歌的AI实力仍然不容小觑。

自开年以来,由Jeff Dean领衔的Google Research年终总结系列「Google Research, 2022 & beyond」一直在持续更新,最近也是更新到了第四期。

本期以「提升模型效率」为主题,一起看看谷歌工程师都想出了哪些ideas!

往期回顾:1. 超详超硬Jeff Dean万字总结火热出炉!图解谷歌2022年AIGC、LLM、CV三大领域成就2. 谷歌2022年度回顾:让AI更负责任,主要做了4点微小的工作3. Jeff Dean发推:谷歌超硬年终总结「第三弹」来了!大力发展Jax

运行效率成关键


在过去十年里,深度学习呈现爆炸式发展,很大程度上是由于新算法和体系结构的融合、数据量的显著增加以及计算能力的提高。

相比十年前,人工智能和机器学习模型变得更加巨大、更复杂,具有更深且更复杂的网络结构、更多的参数、训练时用到了更多的数据,共同促进了机器学习历史上一些最具变革性的成果。

随着这些模型越来越多地部署在生产和业务应用程序中,模型的推理效率和运行成本已经从一个次要因素变成了一个主要的限制因素。

Google在这方面的应对措施就是继续在机器学习效率方面投入巨资,主要解决以下四个难题:

1、高效的模型架构(Efficient Architecture)2、数据效率(Data Efficiency)3、训练效率(Training Efficiency)4、推理效率(Inference Efficiency)

除了效率之外,模型还面临着围绕真实性、安全性、隐私性和时效性(freshness)等诸多难题。

这篇文章将重点介绍一系列Google Research研究公司为应对上述挑战而开发的新算法。


相关文章
|
2月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
613 4
|
2月前
|
机器学习/深度学习 缓存 监控
大模型推理优化技术:KV缓存机制详解
本文深入探讨了大语言模型推理过程中的关键技术——KV缓存(Key-Value Cache)机制。通过对Transformer自注意力机制的分析,阐述了KV缓存的工作原理、实现方式及其对推理性能的显著优化效果。文章包含具体的代码实现和性能对比数据,为开发者理解和应用这一关键技术提供实践指导。
1103 8
|
4月前
|
并行计算 PyTorch 调度
大模型推理显存优化系列(4):eLLM-大模型推理中的弹性显存管理和优化
本文简要介绍eLLM相关技术挑战、总体设计和初步性能评估
|
4月前
|
负载均衡 并行计算 异构计算
大模型训练推理优化(5): FlexLink —— NVLink 带宽无损提升27%
本期我们将介绍蚂蚁集团ASystem团队在大模型通信优化上的新工作FlexLink,旨在通过动态聚合多路通信(NVLink,PCIe,RDMA),在H800等典型硬件上将典型通信算子如(AllReduce, All Gather)吞吐提升最高达27%,尤其适合大模型长序列推理(Prefill阶段),及训练等通信密集的带宽bound场景。方案对精度无影响。
|
2月前
|
机器学习/深度学习 缓存 自然语言处理
【万字长文】大模型训练推理和性能优化算法总结和实践
我们是阿里云公共云 AI 汽车行业大模型技术团队,致力于通过专业的全栈 AI 技术推动 AI 的落地应用。
1750 38
【万字长文】大模型训练推理和性能优化算法总结和实践
|
4月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
1279 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
2月前
|
机器学习/深度学习 存储 并行计算
大模型推理加速技术:FlashAttention原理与实现
本文深入解析大语言模型推理加速的核心技术——FlashAttention。通过分析传统注意力机制的计算瓶颈,详细阐述FlashAttention的IO感知算法设计、前向反向传播实现,以及其在GPU内存层次结构中的优化策略。文章包含完整的CUDA实现示例、性能基准测试和实际部署指南,为开发者提供高效注意力计算的全套解决方案。
403 10
|
2月前
|
机器学习/深度学习 存储 缓存
大模型推理加速技术:PagedAttention原理与实现
本文深入解析大语言模型推理中的革命性技术——PagedAttention,该技术是vLLM推理引擎的核心创新。通过将操作系统中的虚拟内存分页概念引入注意力机制,PagedAttention有效解决了KV缓存的内存碎片问题,实现了近乎零浪费的KV缓存管理。文章详细阐述其原理、内存管理机制、实现细节,并提供完整的代码示例和性能分析。
339 1
|
3月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
505 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南