《Clojure数据分析秘笈》——3.3节使用agent管理程序复杂度

简介:

本节书摘来自华章社区《Clojure数据分析秘笈》一书中的第3章,第3.3节使用agent管理程序复杂度,作者(美)Eric Rochester,更多章节内容可以访问云栖社区“华章社区”公众号查看

3.3 使用agent管理程序复杂度
agent基于STM,并且每个agent的作用与一个引用很相近。可以通过发送agent消息(修改agent状态的函数)来使用agent,并且那些agent运行在进程池中。
使用agent函数创建agent,使用send和send-off函数向其发送消息。函数返回值是agent的新的状态值。
本方法中,解决与3.2节中相同的问题。

3.3.1 准备工作
与3.2节中相同,将引用添加到project.clj文件中并将需要的库加入REPL中。也使用相同的输入文件,同样将该文件命名为data-file。
也仍使用上一种方法中的一些工具函数:lazy-read-csv、with-header、->int、sum-item和sum-items。

3.3.2 具体实现
为了使用agent,只需要在上一方法的基础上加入几个新的函数。

  1. 第一个函数命名为accum-sums。使用其将成对的信息加入agent的输出中。


c817f6393b491db8620b63232739818fbcd3b0ce


06701439c0d8f97c904342f058231a5adf6eb4ab
相关文章
|
数据采集 人工智能 数据可视化
Streamline Analyst: 基于LLMs、一键完成全流程的数据分析AI Agent 🚀
Streamline Analyst 🪄是一个开源的基于GPT-4这样的大语言模型的应用,目标简化数据分析中从数据清洗到模型测试的全部流程。分类预测、聚类、回归、数据集可视化、数据预处理、编码、特征选择、目标属性判断、可视化、最佳模型选择等等任务都不在话下。用户需要做的只有选择数据文件、选择分析模式,剩下的工作就可以让AI来接管了。所有处理后的数据和训练的模型都可下载。
1107 2
Streamline Analyst: 基于LLMs、一键完成全流程的数据分析AI Agent 🚀
|
机器学习/深度学习 人工智能 自然语言处理
构建企业级数据分析助手:Data Agent 开发实践
本篇将介绍DMS的一款数据分析智能体(Data Agent for Analytics )产品的技术思考和实践。Data Agent for Analytics 定位为一款企业级数据分析智能体, 基于Agentic AI 技术,帮助用户查数据、做分析、生成报告、深入洞察。由于不同产品的演进路径,背景都不一样,所以只介绍最核心的部分,来深入剖析如何构建企业级数据分析助手:能力边界定义,技术内核,企业级能力。希望既能作为Data Agent for Analytics产品的技术核心介绍,也能作为读者的开发实践的参考。
688 1
构建企业级数据分析助手:Data Agent 开发实践
|
7月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
9月前
|
数据采集 人工智能 分布式计算
MCP+Hologres+LLM搭建数据分析Agent
本文探讨了LLM大模型在数据分析领域的挑战,并介绍了Hologres结合MCP协议和LLM搭建数据分析Agent的解决方案。传统LLM存在实时数据接入能力不足、上下文记忆短等问题,而Hologres通过高性能数据分析能力和湖仓一体支持,解决了这些痛点。MCP协议标准化了LLM与外部系统的连接,提升集成效率。文中详细描述了如何配置Hologres MCP Server与Claude Desktop集成,并通过TPC-H样例数据展示了分析流程和效果。最后总结指出,该方案显著提高了复杂分析任务的实时性和准确性,为智能决策提供支持。
|
5月前
|
自然语言处理 安全 数据挖掘
MCP 如何构建企业级数据分析 Agent?
阿里云实时数仓 Hologres,联合函数计算 FC 推出「Hologres + 函数计算 FunctionAI + Qwen 构建企业级数据分析 Agent」方案,帮助用户快速对接 MCP,高效跨越企业级数据分析 Agent 构建困境。
|
6月前
|
人工智能 运维 数据挖掘
一站式智能分析引擎,快速构建企业级数据分析 Agent
本文介绍了一种基于阿里云实时数仓 Hologres 和百炼大模型服务的智能数据分析解决方案。通过 Function AI 提供的 Serverless 平台,企业可快速构建从多源数据接入到业务洞察的端到端流程。方案支持实时数据分析、湖仓直连加速、智能预处理及按需付费模式,大幅降低运维成本并提升效率。同时,文章详细描述了实践部署步骤,包括专有网络配置、Hologres 实例创建、公共数据集导入及应用部署验证等环节,并提供了资源清理指南与参考链接,确保用户能够顺利实施和管理方案。
259 18
|
8月前
|
自然语言处理 安全 数据挖掘
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
|
7月前
|
自然语言处理 安全 数据挖掘
通过 MCP 构建企业级数据分析 Agent
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
936 30
|
存储 人工智能 开发框架
【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序
【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序
3394 0