基于虚拟力算法的WSN无线传感器网络覆盖优化matlab仿真

简介: 基于虚拟力算法的WSN无线传感器网络覆盖优化matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:
46eebf961596a9f745b1f89443558115_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   无线传感器网络(Wireless Sensor Networks,WSNs)是一种分布式传感网络,嵌入了传感器的智能设备感测、通信、处理、收集数据,然后通过互联网将数据传输给监测者进行进一步分析,是通过无线通信方式形成的一个多跳自组织网络,可用于大规模物联网应用。由于其传感器通过无线方式通信,所以位置可以随时更改,非常灵活。WSN的覆盖优化问题可以描述为在规定的监测区域内,保证传感器网络连通情况下的节点部署问题。


   虚拟力场法 (Virtual Force Field),是人工势场法原理和栅格法原理结合得到的移动机器人实时避障算法。其基本思想是构造目标方位的引力场和障碍物周围的斥力场共同作用的虚拟人工力场,搜索势函数的下降方向来寻找无碰撞路径,使船舶沿虚拟排斥力和虚拟引力的合力方向运动。

   虚拟力场法 (Virtual Force Field)的基本思想是构造目标方位的引力场和障碍物周围的斥力场共同作用的虚拟人工力场,搜索势函数的下降方向来寻找无碰撞路径,使船舶沿虚拟排斥力和虚拟引力的合力方向运动。它是人工势场法原理和栅格法原理结合得到的移动机器人实时避障的虚拟力场法。


3.MATLAB核心程序

%legend('要监测的区域',['传感器节点(','\fontsize{12}\bf',num2str(N),'\fontsize{10}\rm个)的位置'],' 传感器节点的感知范围');
hold on
plot([XMIN XMAX],[YMIN YMIN],'k','linewidth',1.5);
hold on
plot([XMIN XMIN],[YMIN YMAX],'k','linewidth',1.5);
hold on
plot([XMAX XMAX],[YMIN YMAX],'k','linewidth',1.5);
hold on
plot([XMIN XMAX],[YMAX YMAX],'k','linewidth',1.5);%把四个顶点连接起来组成一个监测区域
%--------------------------------虚拟力算法---------------------------------
%------------先对区域进行离散化---------
deta=2;%网络大小
x1=XMIN:deta:XMAX;
y1=YMIN:deta:YMAX;
[xx,yy]=meshgrid(x1,y1);
[m,n]=size(xx);
K=m*n; %总的网格点数目
xx1=reshape(xx,K,1);%网格点的横坐标
yy1=reshape(yy,K,1);%网格点的纵坐标
%hold on
%plot(xx1,yy1,'g*')
%----------------计算起初的网络覆盖率-----------------------------------------------------
[no_cover,summ,k1]=compute_cover(xx1,yy1,x,r); 
%no_cover存储没有被覆盖的格点位置,k1为求被覆盖的格点,summ为被覆盖的格点数;
q(1,1)=summ/K;
%-------------------------------------------------------
figure,
fill(xm(:,1),xm(:,2),[0.8,0.8,0.8]); %填充监测区域
hold on
plot(x(:,1),x(:,2),'go','markerfacecolor','r','linewidth',6); %传感器节点位置
for i=1:N
    text(x(i,1)+3,x(i,2),['\fontsize{8}\rm',num2str(i)]); %标出传感器节点位置
end
axis([0 1000 0 900]);
xlabel('X/m');ylabel('Y/m');
%----------------------
R=2*r;    %传感器节点的通信半径
maxiter=100; %最大迭代次数
max_step=2.5; %传感器节点移动的最大步长(在格点作用下的最大步长)
max_sensor=3.5; %传感器节点移动的最大步长(在传感器节点作用下的最大步长)
.....................................................................
 
N=40;%传感器节点个数
XMAX=900;%区域总长度
XMIN=100;
YMAX=800;%区域总宽度
YMIN=100;%区域总宽度
figure,
for j=1:kp
    x=xp{j,1};
%figure,
subplot(2,3,j)
xm=[XMIN YMIN;XMIN YMAX;XMAX YMAX;XMAX YMIN];
fill(xm(:,1),xm(:,2),[0.8,0.8,0.8]);
hold on
plot(x(:,1),x(:,2),'r.','linewidth',5);
r=90; %传感器节点的感知半径
w=0:pi/50:2*pi;
for i=1:N
    x1=x(i,1)+r*cos(w);
    y1=x(i,2)+r*sin(w);
    hold on
    plot(x1,y1,'k');
    text(x(i,1)+3,x(i,2),['\fontsize{8}\rm',num2str(i)]);
    hold on
    fill(x1,y1,'y')
end
相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
193 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
177 12
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
122 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
121 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
158 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
272 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
132 0

热门文章

最新文章