2w 字带你实战 ElasticSearch (下)

简介: 2w 字带你实战 ElasticSearch (下)

三、数据导入

在第二部分中,我们学习了如何在ElasticSearch中执行搜索。但是,我们无法使用其批量API将.json数据文件导入ElasticSearch。

在这部分中,我们将进行一些编程,并学习一些有关如何将.json飞行数据文件导入ElasticSearch的方法:

  • 通过将.json数据文件转换为ElasticSearch的API需要的格式
  • 通过解析.json数据文件,使用JSON库(例如gson)提取其值,然后使用ElasticSearch的REST API导入数据

数据转换

ElasticSearch对数据格式有特定的格式要求:

{``"index"``:{``"_id"``:4800770}}
{``"Rcvr"``:1,``"HasSig"``:``false``,``"Icao"``:``"494102"``, ``"Bad"``:``false``,``"Reg"``:``"CS-PHB"``, ...}
...

这就意味着,你需要把下载的每一份json数据按照上述格式进行转换。主要满足如下2点:

  • 在每个数据文档前面加入一行以index开头的数据
  • "Id":<value>修改为{"_id":<value>}

我们可以通过编写简单的Java程序,快速把json文件转换成对应格式:

package com.jgc;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import static java.util.stream.Collectors.toList;
/**
 * Converts a flight data json file to a format that can be imported to 
 * ElasticSearch using its bulk API.
 */
public class JsonFlightFileConverter {
    private static final Path flightDataJsonFile = 
        Paths.get("src/main/resources/flightdata/2016-07-01-1300Z.json");
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        try (Stream<String> stream = Files.lines(flightDataJsonFile.toAbsolutePath())) {
            list = stream
                    .map(line -> line.split("\\{"))
                    .flatMap(Arrays::stream)
                    .collect(toList());
        } catch (IOException e) {
            e.printStackTrace();
        }
        System.out.println(list);
    }
}

最后,通过简单的拼接,输出我们想要的结果:

final String result = list.stream().skip(3)
                .map(s -> "{" + s + "\n")
                .collect(Collectors.joining());
System.out.println(result);

现在,可以看到输出已经非常接近我们想要的结果:

{"Id":4800770,"Rcvr":1,"HasSig":false,"Icao":"494102", ...

实际上,我们可以将最后一个代码片段添加到原始流中,如下所示:

String result = "";
try (Stream<String> stream = Files.lines(flightDataJsonFile.toAbsolutePath())) {
     result = stream
            .map(line -> line.split("\\{"))
            .flatMap(Arrays::stream)
            .skip(3)
            .map(s -> "{" + s + "\n")
            .collect(Collectors.joining());
} catch (IOException e) {
    e.printStackTrace();
}

现在,我们需要在每行的上方插入新行,其中包含文档的索引,如下所示:

{"index":{"_id":4800770}}

我们可以创建一个函数,这样处理会更加简洁明了:

private static String insertIndex(String s) {
    final String[] keyValues = s.split(",");
    final String[] idKeyValue = keyValues[0].split(":");
    return "{\"index\":{\"_id\":"+ idKeyValue[1] +"}}\n";
}

这样,就可以对每个输入进行转换,给出我们需要的输出。

我们还需要解决的更多细节,从每个文档中删除最后一个逗号。

private static String removeLastComma(String s) {
    return s.charAt(s.length() - 1) == ',' ? s.substring(0, s.length() - 1) : s;
}

这时候,数据处理代码就变成了下面这个样子:

public class JsonFlightFileConverter {
 public static void main(String[] args) {
  if (args.length == 1) {
    Path inDirectoryPath = Paths.get(args[0]);
    if (inDirectoryPath != null) {
        Path outDirectoryPath = Paths.get(inDirectoryPath.toString(), "out");
        try {
            if (Files.exists(outDirectoryPath)) {
                Files.walk(outDirectoryPath)
                        .sorted(Comparator.reverseOrder())
                        .map(Path::toFile)
                        .forEach(File::delete);
            }
            Files.createDirectory(Paths.get(inDirectoryPath.toString(), "out"));
        } catch (IOException e) {
            e.printStackTrace();
        }
        try (DirectoryStream ds = Files.newDirectoryStream(inDirectoryPath, "*.json")) {
            for (Path inFlightDataJsonFile : ds) {
                String result = "";
                try (Stream stream = 
                     Files.lines(inFlightDataJsonFile.toAbsolutePath())) {
            result = stream
                      .parallel()
                      .map(line -> line.split("\\{"))
                      .flatMap(Arrays::stream)
                      .skip(3)
                      .map(s -> createResult(s))
                      .collect(Collectors.joining());
                Path outFlightDataJsonFile = 
                     Paths.get(outDirectoryPath.toString(), 
                               inFlightDataJsonFile.getFileName().toString());
                Files.createFile(outFlightDataJsonFile);
                Files.writeString(outFlightDataJsonFile, result);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
 } else {
    System.out.println("Usage: java JsonFlightFileConverter ");
 }
...

使用ElasticSearch的批量API导入数据

需要再次强调,文件必须以空行结尾。如果不是,则添加一个(实际上前面的程序已经在文件末尾添加了换行符)。

在产生新的.json文件的目录(输出目录)内,执行以下命令:

curl -H "Content-Type: application/x-ndjson" -XPOST http://localhost:9200/flight/_bulk --data-binary "@2016-07-01-1300Z.json"

请注意,内容类型是application / x-ndjson,而不是application / x-json

还要注意,我们将数据表示为二进制以便保留换行符。文件名为2016-07-01-1300Z.json

ElasticSearch中任何具有相同ID的现有文档都将被.json文件中的文档替换。

最后,可以发现有7679文件被导入:

"hits" : {
    "total" : {
      "value" : 7679,
      "relation" : "eq"
    },
GET /_cat/shards?v

返回结果:

index   shard prirep state      docs   store ip        node
flight  0     p      STARTED    7679   71mb 127.0.0.1 MacBook-Pro.local
flight  0     r      UNASSIGNED

解析JSON数据

将这些文档导入ElasticSearch的另一种方法是将JSON数据文件解析到内存中,并使用ElasticSearch的REST API将其导入ElasticSearch。

有许多库可用于解析Java中的JSON文件:

  • GSon
  • Jackson
  • mJson
  • JSON-Simple
  • JSON-P

我们将使用Google的GSon库,但其他任何JSON库都可以完成此工作。

GSon提供了多种表示JSON数据的方法,具体使用哪一种,则取决于下一步,即如何将数据导入到ElasticSearch。

ElasticSearch API要求数据的格式为:Map<String, Object>,这是我们将解析后的JSON数据存储到的位置。

首先,将下面依赖加入到pom.xml中:

<dependency>
    <groupId>com.google.code.gson</groupId>
    <artifactId>gson</artifactId>
    <version>2.8.6</version>
</dependency>

使用下方代码解析json数据:

package com.jcg;
import com.google.gson.Gson;
import com.google.gson.internal.LinkedTreeMap;
import com.google.gson.reflect.TypeToken;
import java.io.BufferedReader;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.Map;
public class JsonFlightFileReader {
    private static final String flightDataJsonFile = "src/main/resources/flightdata/2016-07-01-1300Z.json";
    private static final Gson gson = new Gson();
    public static void main(String[] args) {
        parseJsonFile(flightDataJsonFile);
    }
    private static void parseJsonFile(String file) {
        try (BufferedReader reader = Files.newBufferedReader(Paths.get(file))) {
            Map<String, Object> map = gson.fromJson(reader, 
                       new TypeToken<Map<String, Object>>() { }.getType());
            List<Object> acList = (List<Object>) (map.get("acList"));
            for (Object item : acList) {
                LinkedTreeMap<String, Object> flight = 
                        (LinkedTreeMap<String, Object>) item;
                for (Map.Entry<String, Object> entry : flight.entrySet()) {
                    String key = entry.getKey();
                    Object value = entry.getValue();
                    String outEntry = (key.equals("Id") ? "{" + key : key) + " : " + value + ", ";
                    System.out.print(outEntry);
                }
                System.out.println("}");
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

通过下述方法可以使用数据:

Map<String, Object> map = gson.fromJson(reader, new TypeToken<Map<String, Object>>() {}.getType());
List<Object> acList = (List<Object>) (map.get("acList"));

使用ElasticSearch REST API导入数据

首先,在pom.xml中加入下方依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-client</artifactId>
    <version>7.10.0</version>
</dependency>

我们可以通过RestClient与ElasticSearch进行交互:

RestClient restClient = RestClient.builder(
    new HttpHost("localhost", 9200, "http"));
.setDefaultHeaders(new Header[]{
        new BasicHeader("accept", "application/json"),
        new BasicHeader("content-type", "application/json")})
.setFailureListener(new RestClient.FailureListener() {
    public void onFailure(Node node) {
        System.err.println("Low level Rest Client Failure on node " +
                node.getName());
    }
}).build();

创建好RestClient之后,下一步就是创建一个Request,并将json数据传递给它:

Request request = new Request("POST", "/flight/_doc/4800770");
String jsonDoc = "{\"Rcvr\":1,\"HasSig\":false,\"Icao\":\"494102\",...]}";
request.setJsonEntity(jsonDoc);

最后,我们发送请求。

有两种方式,同步

Response response = restClient.performRequest(request);
if (response.getStatusLine().getStatusCode() != 200) {
    System.err.println("Could not add document with Id: " + id + " to index /flight");
}

异步

Cancellable cancellable = restClient.performRequestAsync(request,
    new ResponseListener() {
        @Override
        public void onSuccess(Response response) {
            System.out.println("Document with Id: " + id + " was successfully added to index /flight");
        }
        @Override
        public void onFailure(Exception exception) {
            System.err.println("Could not add document with Id: " + id + " to index /flight");
        }
});

最后,不要忘记关闭restClient连接:

} finally {
    try {
        restClient.close();
    } catch (IOException e) {
        e.printStackTrace();
    }
}

这部分,我们重点介绍了如何将.json数据批处理文件导入到ElasticSearch。

我们看到了如何通过两种方式做到这一点:

  • 使用ElasticSearch的批量API,
  • 使用JSON库解析.json文件

你可以根据自己的情况自行选择其中一种方法。

四、Logstash

在本系列文章的第3部分关于实时流处理的文章中,我们学习了如何使用ElasticSearch的批量API以及利用REST API将.json航班数据文件导入ElasticSearch。

在这篇文章中,我们将介绍另一种方式,Logstash。

Logstash介绍

Logstash是一个开源的数据收集引擎,具有实时流水线功能。

它从多个源头接收数据,进行数据处理,然后将转化后的信息发送到stash,即存储。

Logstash允许我们将任何格式的数据导入到任何数据存储中,不仅仅是ElasticSearch。

它可以用来将数据并行导入到其他NoSQL数据库,如MongoDB或Hadoop,甚至导入到AWS。

数据可以存储在文件中,也可以通过流等方式进行传递。

Logstash对数据进行解析、转换和过滤。它还可以从非结构化数据中推导出结构,对个人数据进行匿名处理,可以进行地理位置查询等等。

一个Logstash管道有两个必要的元素,输入输出 ,以及一个可选的元素,过滤器

输入组件从源头消耗数据,过滤组件转换数据,输出组件将数据写入一个或多个目的地。

所以,我们的示例场景的Logstash架构基本如下。

我们从.json文件中读取我们的航班数据,我们对它们进行处理/转换,应用一些过滤器并将它们存储到ElasticSearch中。

Logstash安装

有几种选择来安装Logstash。

一种是访问网站下载你平台的存档,然后解压到一个文件夹。

你也可以使用你的平台的包管理器来安装,比如yum、apt-get或homebrew,或者作为docker镜像来安装。

确保你已经定义了一个环境变量JAVA_HOME,指向JDK 8或11或14的安装(Logstash自带嵌入式AdoptJDK)。

Logstash工作流

一旦你安装了它,让我们通过运行最基本的Logstash工作流来测试你的Logstash安装情况。

bin/logstash -e 'input { stdin { } } output { stdout {} }'

上面的工作流接受来自stdin(即你的键盘)的输入,并将其输出到stdout(即你的屏幕)。

上面的工作流中没有定义任何过滤器。一旦你看到logstash被成功启动的消息,输入一些东西(我输入的是Hello world),按ENTER键,你应该看到产生的消息的结构格式,像下面这样。

[2021-02-11T21:52:57,120][INFO ][logstash.agent           ] Successfully started Logstash API endpoint {:port=>9600}
Hello world
{
       "message" => "Hello world",
      "@version" => "1",
    "@timestamp" => 2021-02-11T19:57:46.208Z,
          "host" => "MacBook-Pro.local"
}

然而,通常Logstash是通过配置文件来工作的,配置文件告诉它该做什么,即在哪里找到它的输入,如何转换它,在哪里存储它。Logstash配置文件的结构基本上包括三个部分:输入、过滤和输出。

你在输入部分指定数据的来源,在输出部分指定目的地。在过滤器部分,你可以使用支持的过滤器插件来操作、测量和创建事件。

配置文件的结构如下面的代码示例所示。

input {...}
filter {...}
output{...}

你需要创建一个配置文件,指定你要使用的组件和每个组件的设置。在config文件夹中已经存在一个配置文件样本,logstash-sample.conf。

其内容如下所示。

# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.
input {
  beats {
    port => 5044
  }
}
output {
  elasticsearch {
    hosts => ["http://localhost:9200"]
    index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"
    #user => "elastic"
    #password => "changeme"
  }
}

这里input部分定义了Logstash应该从哪里获取数据。这里有一个可用的输入插件列表。

我们的输入不是来自Beats组件,而是来自文件系统,所以我们使用文件输入组件。

input {
  file {
    start_position => "beginning"
    path => "/usr/local/Cellar/logstash-full/7.11.0/data/flightdata/test.json"
    codec => "json"
  }
}

我们使用start_position参数来告诉插件从头开始读取文件。

需要注意,数据路径必须是绝对的。

我们使用的是json编解码器,除了json,还可以使用纯文本形式。

在下载的数据中,可以找到一个名为test.json的文件。它只由2条航班数据组成的文件。

输出块定义了Logstash应该在哪里存储数据。我们将使用ElasticSearch来存储我们的数据。

我们添加了第二个输出作为我们的控制台,并使用rubydebugger格式化输出,第三个输出作为文件系统,最后两个用于测试我们的输出。我们将输出存储在output.json中。

output {
  elasticsearch {
    hosts => ["http://localhost:9200"]
    index => "testflight"
  }
  file {
    path => "/usr/local/Cellar/logstash-full/7.11.0/data/output.json"
  }
  stdout {
    codec => rubydebug
  }
}

此外,还可以定义过滤器来对数据进行转换。

Logstash提供了大量的过滤器,下面介绍一些非常常用的的过滤器:

  • grok :解析任何任意文本并添加结构,它包含120种内置模式
  • mutate :对字段进行一般的转换,例如重命名、删除、替换和修改字段
  • drop :丢弃一个数据
  • clone :复制一个数据,可能增加或删除字段
  • geoip :添加IP地址的地理位置信息
  • split :将多行消息、字符串或数组分割成不同的数据

可以通过执行下方命令查看 Logstash 安装中安装的全部插件列表。

$ bin/logstash-plugin list

你会注意到,有一个JSON过滤器插件。这个插件可以解析.json文件并创建相应的JSON数据结构。

正确地选择和配置过滤器是非常重要的,否则,你最终的输出中没有数据。

所以,在我们的过滤块中,我们启用json插件,并告诉它我们的数据在消息字段中。

filter {
  json {
    source => "message"
  } 
}

到此为止,完成的配置文件config/testflight.conf内容如下:

input {
  file {
    start_position => "beginning"
    path => "/usr/local/Cellar/logstash-full/7.11.0/data/flightdata/test.json"
    codec => "json"
  }
}
filter {
  json {
    source => "message"
  }
}
output {
#   elasticsearch {
#   hosts => ["http://localhost:9200/"]
#   index => "testflight" 
# }
  file {
    path => "/usr/local/Cellar/logstash-full/7.11.0/data/output.json"
  }
  stdout {
    codec => rubydebug
  }
}

你可以通过如下命令进行一下测试:

bin/logstash -f config/testflight.conf --config.test_and_exit
...
Configuration OK
[2021-02-11T23:15:38,997][INFO ][logstash.runner          ] Using config.test_and_exit mode. Config Validation Result: OK. Exiting Logstash

如果配置文件通过了配置测试,用以下命令启动Logstash。

bin/logstash -f config/testflight.conf --config.reload.automatic
...

--config.reload.automatic配置选项可以实现自动重载配置,这样你就不必每次修改配置文件时都要停止并重新启动Logstash。

如果一切顺利,你应该会看到如下的输出结果。

{
           "CMsgs" => 1,
        "@version" => "1",
         "PosTime" => 1467378028852,
            "Rcvr" => 1,
        "EngMount" => 0,
            "Tisb" => false,
             "Mil" => false,
             "Trt" => 2,
            "Icao" => "A0835D",
            "Long" => -82.925616,
            "InHg" => 29.9409447,
            "VsiT" => 1,
      "ResetTrail" => true,
         "CallSus" => false,
      "@timestamp" => 2021-02-14T18:32:16.337Z,
            "host" => "MacBook-Pro.local",
          "OpIcao" => "RPA",
             "Man" => "Embraer",
            "GAlt" => 2421,
              "TT" => "a",
             "Bad" => false,
          "HasSig" => true,
           "TSecs" => 1,
             "Vsi" => 2176,
         "EngType" => 3,
             "Reg" => "N132HQ",
             "Alt" => 2400,
         "Species" => 1,
    "FlightsCount" => 0,
             "WTC" => 2,
             "Cos" => [
        [0] 39.984322,
        [1] -82.925616,
        [2] 1467378028852.0,
        [3] nil
    ],"message" => "{\"Id\":10519389,\"Rcvr\":1,\"HasSig\":true,\"Sig\":0,\"Icao\":\"A0835D\",\"Bad\":false,\"Reg\":\"N132HQ\",\"FSeen\":\"\\/Date(1467378028852)\\/\",\"TSecs\":1,\"CMsgs\":1,\"Alt\":2400,\"GAlt\":2421,\"InHg\":29.9409447,\"AltT\":0,\"Lat\":39.984322,\"Long\":-82.925616,\"PosTime\":1467378028852,\"Mlat\":true,\"Tisb\":false,\"Spd\":135.8,\"Trak\":223.2,\"TrkH\":false,\"Type\":\"E170\",\"Mdl\":\"2008 EMBRAER-EMPRESA BRASILEIRA DE ERJ 170-200 LR\",\"Man\":\"Embraer\",\"CNum\":\"17000216\",\"Op\":\"REPUBLIC AIRLINE INC     - INDIANAPOLIS, IN\",\"OpIcao\":\"RPA\",\"Sqk\":\"\",\"Vsi\":2176,\"VsiT\":1,\"WTC\":2,\"Species\":1,\"Engines\":\"2\",\"EngType\":3,\"EngMount\":0,\"Mil\":false,\"Cou\":\"United States\",\"HasPic\":false,\"Interested\":false,\"FlightsCount\":0,\"Gnd\":false,\"SpdTyp\":0,\"CallSus\":false,\"ResetTrail\":true,\"TT\":\"a\",\"Trt\":2,\"Year\":\"2008\",\"Cos\":[39.984322,-82.925616,1467378028852.0,null]}",
             "Lat" => 39.984322,
            "TrkH" => false,
              "Op" => "REPUBLIC AIRLINE INC     - INDIANAPOLIS, IN",
         "Engines" => "2",
             "Sqk" => "",
              "Id" => 10519389,
             "Gnd" => false,
            "CNum" => "17000216",
            "path" => "/usr/local/Cellar/logstash-full/7.11.0/data/flightdata/test.json",
             "Cou" => "United States",
          "HasPic" => false,
           "FSeen" => "/Date(1467378028852)/",
      "Interested" => false,
             "Mdl" => "2008 EMBRAER-EMPRESA BRASILEIRA DE ERJ 170-200 LR",
             "Spd" => 135.8,
             "Sig" => 0,
            "Trak" => 223.2,
            "Year" => "2008",
          "SpdTyp" => 0,
            "AltT" => 0,
            "Type" => "E170",
            "Mlat" => true
}

数据转换

首先,让我们从输出中删除path, @version, @timestamp, host和message,这些都是logstash添加的。

filter {
  json {
    source => "message"
  }
  mutate {
    remove_field => ["path", "@version", "@timestamp", "host", "message"]
  }
}

mutate过滤器组件可以删除不需要的字段。

重新运行:

bin/logstash -f config/flightdata-logstash.conf –-config.test_and_exit
bin/logstash -f config/flightdata-logstash.conf --config.reload.automatic

接下来,我们将_id设置为Id。

output {
  elasticsearch {
    hosts => ["http://localhost:9200"]
    index => "testflight"
    document_id => "%{Id}"
  }

我们在输出组件中通过设置document_id来实现。

然而,如果你重新运行logstash,你会发现Id字段仍然存在。

有一个窍门,在过滤插件中把它改名为[@metadata][Id],然后在输出中使用,@metadata字段被自动删除。

filter {
  json {
     source => "message"
  }
  mutate {
    remove_field => ["path", "@version", "@timestamp", "host", "message"]
    rename => { "[Id]" => "[@metadata][Id]" }
  }
}
output {
  elasticsearch {
    hosts => ["http://localhost:9200"]
    index => "flight-logstash"
    document_id => "%{[@metadata][Id]}"
  }
...

现在让我们尝试解析日期。如果你还记得,这是我们在上一篇文章中没有做的事情,我们需要将日期转换为更适合人们熟悉的格式。

例如:

"FSeen" => "\/Date(1467378028852)\/"

需要将时间1467378028852转化成容易阅读的格式,并且去掉前后多余的字符串,通过gsub组件可以实现这项功能:

gsub => [
          # get rid of /Date(
          "FSeen", "\/Date\(", "",
          # get rid of )/
          "FSeen", "\)\/", ""
        ]

这里通过gsub去掉了数据中/Date()\等多余部分,输出结果为:

"FSeen" : "1467378028852"

然后把时间戳转换成熟悉的格式:

date {
   timezone => "UTC"
   match => ["FSeen", "UNIX_MS"]
   target => "FSeen"
}

UNIX_MS是UNIX时间戳,单位是毫秒。我们匹配字段FSeen并将结果存储在同一字段中,输出结果为:

"FSeen" : "2016-07-01T13:00:28.852Z",

上述转换的完整代码如下:

mutate {
   gsub => [
     # get rid of /Date(
     "FSeen", "\/Date\(", "",
     # get rid of )/
     "FSeen", "\)\/", ""
   ]  
}
date {
   timezone => "UTC"
   match => ["FSeen", "UNIX_MS"]
   target => "FSeen"
}

在这部分 中,我们学习了如何使用Logstash将.json航班数据批量文件导入到ElasticSearch中。Logstash是一个非常方便的方式,它有很多过滤器,支持很多数据类型,你只需要学习如何编写一个配置文件就可以了!

Logstash是否适合实时数据处理?

答案是:要看情况

Logstash主要是为批处理数据而设计的,比如日志数据,也许不适合处理来自传感器的实时航班数据。

不过,你可以参考一些参考资料,这些资料描述了如何创建可以扩展的Logstash部署,并使用Redis作为Logstash代理和Logstash中央服务器之间的中介,以便处理许多事件并实时处理它们。



相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
相关文章
|
2月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
853 6
|
8月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:&lt;https://github.com/awesimon/elasticsearch-mcp&gt;,欢迎体验与反馈。
2170 1
|
存储 数据采集 数据处理
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
数据处理神器Elasticsearch_Pipeline:原理、配置与实战指南
669 12
|
缓存 数据处理 数据安全/隐私保护
Elasticsearch索引状态管理实战指南
Elasticsearch索引状态管理实战指南
269 0
|
存储 索引
Elasticsearch索引之嵌套类型:深度剖析与实战应用
Elasticsearch索引之嵌套类型:深度剖析与实战应用
|
存储 JSON 搜索推荐
Springboot2.x整合ElasticSearch7.x实战(三)
Springboot2.x整合ElasticSearch7.x实战(三)
209 0
|
8月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1487 64
|
7月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3732 0
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
476 5

热门文章

最新文章