基于小波神经网络的短期网络流量数据预测

简介: 基于小波神经网络的短期网络流量数据预测

1.算法仿真效果
matlab2022a仿真结果如下:

39084a7fe6c8a433e20b031c42285abe_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7b45ae7df70e993e3837cde707af2fea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
677a1231ee21daac613ac750c7ca6238_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
16d67bf59585b3dc261e6b10d6fcb113_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
ea3c2fc1640f3b5e6dab3fa2d3f4bdf6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    网络流量能直接反映网络性能的好坏,网络流量的建模与预测对于大规模网络的规划设计、网络资源管理以及用户行为的调节等方面都具有积极意义。本课题首先介绍了网络流量的特征,在分析了小波理论的基础上提出了一种基于小波变换的网络流量预测模型。该模型采用小波分解把网络流量数据分解成小波系数和尺度系数,即高频系数和低频系数,将不同频率成分的系数单支重构为高频流量分量和低频流量分量。本课题,我们通过网络流量采集软件来采集网络流量,网络流量的单步预测这些实验的结果验证了本文提出的预测模型的有效性和优越性。

   小波变换能够将一个信号分解成信号对空间和时间的独立部分,同时又不丢失原信号所包含的信息,并且可以找到正交基,实现无盈余的信号分解。由于分解后的信号在频率成分上比原始信号单一,并且小波分解对信号做了平滑,因此分解后信号的平稳性比原始信号要好得多,对信号的分析研究具有明显的优势。

   采用基于小波的建模方法来检测网络流量中的长相关现象和进行参数估计。这种方法在十分宽泛的条件下进行参数估计,得到的结果都是无偏的,并且在高斯的假设下十分有效。同时,这个方法具有很好的鲁棒性,它不仅能够排除噪声的干扰,而且不受序列中一些确定性趋势的影响。下一代网络(NGN)的运行环境,将神经网络中的转移函数使用小波函数来替代从而构建出另一种小波神经网络,同时使用小波多尺度变换方法将原始流量信号分解成不同频率成分的分量信号并将其送到这种小波神经网络中进行预测。

   小波变换是近十几年信信号处理领域研究的一个热点,许多学者将小波在理论上的研究成果应用到诸如图像压缩、特征提取、信号滤波和数据融合等方面,而且小波变换的领域还在不断地发展当中。小波之所以在信号处理领域具有很大的优势,在于小波变换可以获得信号的多分辨率描述,这种描述符合人类观察世界的一般规律,同时,小波变换具有丰富的小波基以适应具有不同特性的信号。小波神经网络的基本结构如下所示:

9634887809c59b227a38362f95327ac5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于小波的人工神经网络,即小波神经网络(WNN)是对生物神经进行仿真研究的结果,是基于生物学中的神经网络的基本原理,按照控制工程的思路和数学描述的方法建立起来的数学模型。WNN能够模拟人脑的结构与功能机制,实现某方面的功能,能自我感知,自主适应,有很强的学习和逼近功能;能比较准确地揭示非线性复杂动力系统的内在关系和演化机理。所以WNN可以用来分析和预测网络流量行为和演化趋势。

 系统算法的基本流程如下所示:

5b9c297ffd206b34080052af4657e203_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.MATLAB核心程序

figure;
plot(ynn,'r*:')%画图
hold on
plot(output,'bo--')%画图
title('预测总流量','fontsize',12)
legend('预测总网络流量','实际总网络流量')
xlabel('时间点')
ylabel('总流量')
figure;
plot(error,'b-o');grid on;
%% 有效流量数据
input2(:,1)=data01(:,2);
input2(:,2)=data02(:,2);
input2(:,3)=data03(:,2);
input2(:,4)=data04(:,2);
input2(:,5)=data05(:,2);
input2(:,6)=data06(:,2);
output2    =data07(:,2);
[ynn2,error2]=wavelet_func(input2,output2,input2,output2);
%结果分析
figure;
plot(ynn2,'r*:')%画图
hold on
plot(output2,'bo--')%画图
title('预测有效流量','fontsize',12)
legend('预测有效流量','实际有效流量')
xlabel('时间点')
ylabel('有效流量')
figure;
plot(error2,'b-o');grid on;
%% 垃圾信息流量
input3(:,1)=data01(:,3);
input3(:,2)=data02(:,3);
input3(:,3)=data03(:,3);
input3(:,4)=data04(:,3);
input3(:,5)=data05(:,3);
input3(:,6)=data06(:,3);
output3    =data07(:,3);
[ynn3,error3]=wavelet_func(input3,output3,input3,output3);
%结果分析
figure;
plot(ynn3,'r*:')%画图
hold on
plot(output3,'bo--')%画图
title('预测垃圾信息流量','fontsize',12)
legend('预测垃圾信息流量','实际垃圾信息流量')
xlabel('时间点')
ylabel('垃圾信息流量')
figure;
plot(error3,'b-o');grid on;
%% 病毒流量数据
input4(:,1)=data01(:,4);
input4(:,2)=data02(:,4);
input4(:,3)=data03(:,4);
input4(:,4)=data04(:,4);
input4(:,5)=data05(:,4);
input4(:,6)=data06(:,4);
output4    =data07(:,4);
[ynn4,error4]=wavelet_func(input4,output4,input4,output4);
%结果分析
figure;
plot(ynn4,'r*:')%画图
hold on
plot(output4,'bo--')%画图
title('预测病毒流量流量','fontsize',12)
legend('预测病毒流量流量','实际病毒流量流量')
xlabel('时间点')
ylabel('病毒流量流量')
figure;
plot(error4,'b-o');grid on;
%%
figure
plot(ynn,'r-*');hold on;
plot(ynn2,'k-*');hold on;
plot(ynn3,'g-o');hold on;
plot(ynn4,'b-o');hold off;
legend('总流量数据','有效流量数据','垃圾信息流量','病毒流量数据')    
相关文章
|
3月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
380 0
|
4月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
153 0
|
5月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
160 0
|
6月前
|
Python
LBA-ECO CD-32 通量塔网络数据汇编,巴西亚马逊:1999-2006,V2
该数据集汇集了1999年至2006年间巴西亚马逊地区九座观测塔的碳和能量通量、气象、辐射等多类数据,涵盖小时至月度时间步长。作为第二版汇编,数据经过协调与质量控制,扩展了第一版内容,并新增生态系统呼吸等相关计算数据,支持综合研究与模型合成。数据以36个制表符分隔文本文件形式提供,配套PDF说明文件,适用于生态与气候研究。引用来源为Restrepo-Coupe等人(2021)。
124 1
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
158 0
|
6月前
|
机器学习/深度学习 数据采集 调度
bp神经网络电力系统短期负荷预测
bp神经网络电力系统短期负荷预测
270 60
|
3月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
109 0
|
3月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
5月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
157 4
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

热门文章

最新文章