【复杂网络建模】——Python可视化重要节点识别(PageRank算法)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【复杂网络建模】——Python可视化重要节点识别(PageRank算法)

一、复杂网络建模


复杂网络建模是指对复杂网络进行建模和分析的过程,其中复杂网络是由大量节点和连接组成的网络,这些节点和连接之间的关系可以是非常复杂的。复杂网络建模通常使用图论和网络科学的方法,通过将节点和边建模为数学对象来研究网络的结构、动态和行为。


在复杂网络建模中,常见的方法包括图论分析、随机图模型、小世界网络模型、无标度网络模型等。这些方法可以用来描述网络的拓扑结构、度分布、聚类系数、路径长度等特征,并通过模拟和仿真来研究网络的演化和行为。


复杂网络建模在许多领域都有应用,如社交网络、脑网络、物流网络、交通网络等。通过对这些网络进行建模和分析,可以帮助我们更好地理解网络的特性和行为,以及预测和优化网络的性能。


二、建模的算法


复杂网络建模的算法包括以下几种:


  1. 图论分析:通过对网络的节点和边进行数学建模,分析网络的拓扑结构、度分布、聚类系数、路径长度等特征。常用的图论算法包括最短路径算法、最大流算法、最小生成树算法等。

  2. 随机图模型:通过随机生成网络模型来研究网络的性质和行为。常用的随机图模型包括Erdős-Rényi模型、Watts-Strogatz模型、Barabási-Albert模型等。

  3. 小世界网络模型:通过将传统的规则网络和随机网络相结合,模拟真实世界中的网络结构,研究网络的小世界特性。常用的小世界网络模型包括Watts-Strogatz模型和Newman-Watts模型等。

  4. 无标度网络模型:通过分析网络节点度分布的特点,建立节点度数的幂律分布模型,研究网络的无标度特性。常用的无标度网络模型包括Barabási-Albert模型和Price模型等。

  5. 复杂网络演化算法:通过模拟和仿真网络的演化过程,研究网络的动态性质和行为。常用的复杂网络演化算法包括基于优化的算法、基于遗传算法的算法和基于神经网络的算法等。


三、使用PageRank算法进行网络重要节点识别


1、PageRank算法

PageRank算法是一种用于确定网络中节点重要性的算法,最初由Google公司用于对网页进行排序。在复杂网络中,PageRank算法同样可以用于识别节点的重要性。其基本思想是,一个节点的重要性取决于与它相连的节点的重要性,重要性越高的节点贡献越大。


具体来说,PageRank算法将节点的重要性定义为其在整个网络中被访问的概率。该算法通过迭代计算节点的PageRank值来得到每个节点的重要性。在每次迭代中,每个节点的PageRank值都会根据其相邻节点的PageRank值进行更新,具体更新公式如下:


93938e0c220f47169a5246d8df1df078.png


其中,$PR(u)$表示节点$u$的PageRank值,$d$为阻尼系数,$N$为网络中节点的总数,$B_u$表示与节点$u$相邻的节点集合,$N_v$表示节点$v$的出度(即与$v$相邻的节点数)。初始时,每个节点的PageRank值都可以设置为一个相同的值(例如1/N)。


PageRank算法的迭代过程可以一直进行下去,直到节点的PageRank值收敛。通常情况下,迭代次数需要设置一个上限,以确保算法能够在合理的时间内结束。


需要注意的是,当网络比较大时,直接使用PageRank算法可能会比较慢。此时可以使用PageRank的快速算法,如Power Iteration(幂迭代)算法、Arnoldi迭代算法等。


2、基于PageRank算法的ER网络重要节点识别

当ER网络比较大时,使用基于度中心性的方法会比较慢,可以使用PageRank等算法来实现重要节点识别。下面是基于PageRank算法的ER网络重要节点识别代码示例:


importnetworkxasnximportrandom#创建ER网络N=1000p=0.05er_graph=nx.erdos_renyi_graph(N, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(er_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))


在上面的代码中,我们首先使用networkx库中的erdos_renyi_graph()函数创建一个ER网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


425f32b1bd07407c9a4e9213dde3ebed.png


可以使用networkx库将ER网络可视化,并将PageRank值高的节点着色,以便更直观地展示重要节点的位置。下面是代码示例:


importnetworkxasnximportrandomimportmatplotlib.pyplotasplt#创建ER网络N=1000p=0.05er_graph=nx.erdos_renyi_graph(N, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(er_graph, alpha=0.9)
#将PageRank值映射到节点颜色color_map= []
fornodeiner_graph.nodes():
ifnodeinpr.keys():
color_map.append(pr[node])
else:
color_map.append(0)
#可视化ER网络pos=nx.spring_layout(er_graph, seed=1)
nx.draw(er_graph, pos, node_color=color_map, cmap=plt.cm.Reds)
plt.show()


在上面的代码中,我们首先使用spring_layout()函数将ER网络的节点布局进行可视化,并根据每个节点的PageRank值将其着色。最后使用draw()函数将网络可视化出来。可以通过调整参数和颜色映射等来改变可视化效果。


3e696dc9b9374c7da3e2298eede8348d.png


3、基于PageRank算法的小世界网络重要节点识别


importnetworkxasnximportrandom#创建小世界网络N=1000k=10p=0.2ws_graph=nx.watts_strogatz_graph(N, k, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ws_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))

1a5e3339d7194472b9f073c36a79ed6a.png

展示top-10的结果。


我们首先使用networkx库中的watts_strogatz_graph()函数创建一个小世界网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


代码可视化:


#coding: utf-8importnetworkxasnximportmatplotlib.pyplotasplt#创建小世界网络N=500k=10p=0.2ws_graph=nx.watts_strogatz_graph(N, k, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ws_graph, alpha=0.9)
#绘制小世界网络pos=nx.spring_layout(ws_graph, seed=1)
nx.draw_networkx(ws_graph, pos, node_size=30, cmap=plt.cm.Reds)
#根据节点的PageRank值给节点上色node_color= [pr[node] fornodeinws_graph.nodes()]
cbar=plt.colorbar(plt.scatter([], [], c=[], cmap=plt.cm.Reds))
cbar.ax.set_ylabel('PageRank Value')
nx.draw_networkx_nodes(ws_graph, pos, node_size=30, cmap=plt.cm.Reds, node_color=node_color)
plt.axis('off')
plt.show()


615b65b345b6404a885027c4b69d1d70.png


我们首先使用spring_layout()函数计算小世界网络中每个节点的位置,并使用draw_networkx()函数将网络绘制出来。然后根据节点的PageRank值,使用scatter()函数绘制一个空的散点图,并在散点图旁边添加一个颜色条,用于表示PageRank值的大小。最后,使用draw_networkx_nodes()函数对节点进行上色,将节点的颜色与其PageRank值相关联。最终,我们可以得到一张小世界网络及其节点PageRank值的可视化图像。


4、基于PageRank算法的无标度网络的重要节点识别

importnetworkxasnx#创建无标度网络N=1000m=4ba_graph=nx.barabasi_albert_graph(N, m, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ba_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))


我们首先使用networkx库中的barabasi_albert_graph()函数创建一个无标度网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


f2593466f55446a2a8b0f1e806ac69ea.png


我们首先使用spring_layout()函数计算无标度网络中每个节点的位置,并使用draw_networkx()函数将网络绘制出来。然后根据节点的PageRank值,使用scatter()函数绘制一个空的散点图,并在散点图旁边添加一个颜色条,用于表示PageRank值的大小。最后,使用draw_networkx_nodes()函数对节点进行上色,将节点的颜色与其PageRank值相关联。最终,我们可以得到一张无标度网络及其节点PageRank值的可视化图像。


四、ER网络、小世界网络、无标度网络的区别


ER网络、小世界网络和无标度网络是三种常见的复杂网络模型,它们在重要节点识别上有一些区别。


ER网络是一种随机图模型,其中节点之间的边是随机地出现的,没有任何特定的模式。因此,ER网络中的节点在度分布上呈现出近似于泊松分布的随机性,这意味着节点的度数差异不大。在ER网络中,节点的重要性主要由其度数决定,即度中心性是一种常用的重要性度量方法。


小世界网络是介于随机网络和完全网络之间的一种网络模型。在小世界网络中,大部分节点仍然与其它节点具有短距离连接,但是也存在一些长距离连接,从而形成了高度聚集的社交圈子。在小世界网络中,节点的重要性主要由其在网络中的位置决定,即介数中心性和接近中心性是常用的重要性度量方法。


无标度网络是一种特殊的网络模型,其中一些节点具有非常高的度数,而大多数节点只有很少的连接。在无标度网络中,节点的度数呈幂律分布,即少数节点的度数非常高,而大多数节点的度数非常低。在这种网络中,重要节点通常是那些具有高度中心性和介数中心性的节点,这些节点通常是网络的“枢纽”。


因此,这三种不同的网络模型在重要节点识别上有不同的重点和方法。在ER网络中,节点的度数是主要的重要性度量,而在小世界网络中,节点的位置和中心性是主要的重要性度量。而在无标度网络中,节点的度数、中心性和位置都是重要性度量的重点。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
16天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
17天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
166 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
14天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
47 17
|
23天前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
44 20
|
18天前
|
存储 人工智能 算法
深度解密:员工飞单需要什么证据之Python算法洞察
员工飞单是企业运营中的隐性风险,严重侵蚀公司利润。为应对这一问题,精准搜集证据至关重要。本文探讨如何利用Python编程语言及其数据结构和算法,高效取证。通过创建Transaction类存储交易数据,使用列表管理订单信息,结合排序算法和正则表达式分析交易时间和聊天记录,帮助企业识别潜在的飞单行为。Python的强大功能使得从交易流水和沟通记录中提取关键证据变得更加系统化和高效,为企业维权提供有力支持。
|
17天前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
21 3
|
1月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
22天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
22天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
121 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。