【Linux】进程理解与学习Ⅲ-环境变量

简介: 【Linux】进程理解与学习Ⅲ-环境变量

前言



什么是变量?


在学习之前我们要先搞清楚这个概念,就比如说【y=ab+cd】,在这里,等号左边的就是变量,等号右边的则是变量的内容。变量是bash中非常重要的一个存在,在Linux下变量又分为自定义变量以及环境变量。本次章节讲对此做相关理解。


变量的定义与查看

变量的定义与查看


由我们用户自己来直接定义的变量叫做自定义变量(也可以说时本地变量),上面说过等号左边为变量名,右边为变量的内容,我们便可以根据此特点直接定义一个自定义变量。(我们可以通过echo $变量名来查看该变量的内容)如下:


1.png


★注意点:


这里我们在定义变量时,有以下几点需要注意:


等号两边不能直接跟空格,否则会报错


等号左边的变量名的开头只能是英文字母(比如:2myval这种写法错误)


假如我们想要保持一个变量的内容,并用该变量名去定义另一个变量时,我们要在该变量名称前加上$符号(比如我用myval的内容去定义age,就要写成age=$myval.其中$的作用便是保留原有变量的内容,记住这一点,后面配置PATH中会用到此特点)


在定义变量时,前面加export,就会将该变量导入环境变量表中(环境变量后面会讲)


2.png


变量的取消定义


我们可以使用unset 变量名的指令来取消该变量的定义,如下:


3.png


环境变量



什么是环境变量呢?相信学习Java、Python的老铁们应该会有一个更深刻的认识,因为在写Java之前,相信大家都会安装jdk,并在Windows下配置相关环境变量,配置完成后才能正常编写。如下图所示,这就是Windows下的环境变量:


4.png


Windows下的环境变量


说了这么多,还是没说到环境变量究竟是什么?


实际上环境变量一般是指在操作系统中用来指定操作系统运行环境的一些参数。Linux中同样也存在着相关的环境变量。


这里举个例子:我们在编写C/C++代码的时候,在链接的时候,从来不知道我们的所链接的动态静态库在哪里,但是照样可以链接成功,生成可执行程序,原因就是有相关环境变量帮助编译器进行查找。

不仅如此,环境变量通常还具有全局属性,并且一般都是以大写字符来表示。而由各个环境变量在一起构成的集合,一般我们称之为环境变量表,环境变量表可以被子进程继承。(先说结论)


常见环境变量


以上所讲都只是一些概念层次的知识,接下来我们讲几个比较常见的环境变量,以便于大家能更好的理解。


PATH : 指定命令的搜索路径


SHELL : 当前Shell,它的值通常是/bin/bash。


USER:当前用户


PATH

我们在写完代码并编译,生成一个可执行程序时,为什么运行的时候要加./?实际上运行一个程序的前提是找到该程序。只有找到它,才能运行它,而./的含义大家应该知道,表示的是当前所在路径。


5.png


那么为什么我们输入ls的时候,则不用指定ls所在的具体位置呢?这里就涉及到了PATH,我们可以输入指令echo $PATH来查看PATH这个环境变量的内容,并且输入指令which ls:来查看ls所在的路径。就会发现原来ls所在的路径在PATH里。


6.png


而PATH的作用则是指定搜索路径,所以我们输入指令ls的时候,会自动去PATH中搜寻路径,发现PATH中有ls所在的路径,因此我们直接输入ls的时候,不用我们手动指定路径,也可以运行ls。但是如果我们不手动指定我们自己写的程序mytest,则会报错,因为环境变量中并没有mytest所在的路径。


7.png


那么我们可不可以像Windows一样,配置我们的环境变量呢?答案是可以的。


PATH环境变量的配置

我们可以使用指令export PATH=$PATH:自定义路径(上面在变量的定义中讲了$的作用就是保留PATH的原有内容,PATH中:是分隔符,所以我们这样来定义就相当于给PATH追加了一个内容。)如下:


8.png


环境变量的查看


一、env指令


我们可以直接输入指令env,便可以查看当前bash下的所有环境变量


9.png


二、通过指针数组访问


实际上,我们的环境变量表是一个指针数组结构,而环境变量会被子进程所继承。我们便可以利用此特点来使用我们自己写的函数打印出环境变量。其实我们在写main函数时,实际上main函数有三个参数:int argc、char* argv[]、char*envp[]。而char*envp[]这个指针数组中的内容,就指向我们所说的环境变量表的内容的起始地址。如下:


10.png


我们可以通过代码来验证一下:


#include<stdio.h>                                                                                                  
 int main(int argc,char* argv[],char* envp[])
 {                                           
   for(int i=0; envp[i]; ++i)
   {                         
     printf("envp[%d]:%s\n",i,envp[i]);
   }                                   
 }


11.png


运行结果


三、通过全局变量environ获取


#include<stdio.h>
 int main(int argc,char* argv[],char* envp[])
 {
   extern char** environ;
   for(int i=0; environ[i]; ++i)                                                                                        
   {
     printf("environ[%d]:%s\n",i,environ[i]);
   }
 }

四、通过系统调用函数getenv()来获取我们想要的环境变量


我们可以通过系统调用函数getenv()来获取我们想要查看的环境变量,如下:


#include<stdio.h>
#include<stdlib.h>//头文件
 int main()
 {
   printf("%s",getenv("PATH"));
 }


关于环境变量的理解


先来看以下代码:


12.png


我们从中可以得出结论:


只有环境变量会被子进程所继承,自定义变量并不会。自定义变量只能在自己的shell内使用。实际上在环境变量的查看中我们也验证了这一点:即main函数实际上的第三个参数,便是用来接收环境变量表的指针数组。


13.png


★总结



上面讲的有些零碎,这里做一个总结:


【y=a】等号左边表示的是变量名,右边表示变量内容


我们可以通过echo $变量名的指令,来查看该变量的内容


在定义变量时,前面加上export,则会将该变量导入环境变量表


环境变量表实际上是所有环境变量的集合,本质上是一个指针数组,每一个数组元素都是指针,指向对应的环境变量的内容的起始位置。(最后一个位置为NULL)


set指令会打印出所有的变量的内容(本地、环境),env则只打印环境变量的内容


环境变量我们可以通过main函数中的指针数组来查看(环境变量会被子进程继承,所以我们写的程序也可以拿到父进程bash的环境变量表)、也可以通过全局变量environ来查看,或者通过函数getenv()来获取。


环境变量可以被所有子进程继承,但是自定义变量则只可以在自己的shell中使用。


我们可以通过unset 环境变量名 来取消该环境变量。


环境变量实际上是内存级别的一张表,当我们登录系统时,os会给用户形成特定的环境变量表。而环境变量对应的数据实际上保存在了系统的相关配置文件中(bashrc、profile等)。


14.png


环境变量的相关配置文件部分内容


命令行参数



在上面我们讲到了main函数中的三个参数,为int argc、char* argv[]、char* envp[]。其中我们了解了第三个参数,也就是用来接收环境变量表的指针数组。那么前面两个呢?


argc:传入的元素个数(也就是我们输入的指令的个数)


char* argv[]:也是一个表,只不过这张表存放的是指向传入的元素的起始位置的指针。其中,最后一个有效元素的下一个内容为NULL(这张表由bash制作)


15.png


当然,我们也可以写以下代码来验证:


#include<stdio.h>
 //argc:传入的元素个数                                                                                                    
 //argv:用来存放元素内容起始位置的指针数组
 int main(int argc,char* argv[])          
 {                                        
   printf("传入的元素个数为:%d\n",argc);
   printf("传入的有效元素内容为:\n");  
   for(int i=0; i<argc; i++)          
   {                        
     printf("argv[%d]:%s\n",i,argv[i]);
   }                                   
   return 0;                           
 }


16.png


运行结果


为什么我们输入ls -a 与ls -l 的功能不同,原理也在于此,即对命令行参数进行相关指令设置。我们也可以实现一个简单的任务:如下:


#include<stdio.h>
 #include<stdlib.h>
 #include<string.h>
 #include<unistd.h>
 void Utest(char* st)
 {
   printf("%s:-[a | b]\n",st);
 }
 int main(int argc,char* argv[])
 {
   //身份验证,只有qidunyan用户可以进行操作
   if(strcmp(getenv("USER"),"qidunyan"))
   {
     printf("%s用户非法\n",getenv("USER"));
     return 0;
   }
   //指令输入错误                                                                                                                             
   if(argc!=2)
   {
     printf("指令错误,请重新输入:\n");
     Utest(argv[0]);
   }
// ./mytest -a
   if(strcmp(argv[1],"-a")==0)
   {
     printf("执行A任务\n");
     //...
     sleep(3);
     printf("执行完毕\n");
   }                                                                                                                                          
   else if(strcmp(argv[1],"-b") == 0)
   {
     printf("执行B任务\n");
     //...
     sleep(3);
     printf("执行完毕\n");
   }
   else 
   {
     printf("指令错误,重新输入:\n");
     Utest(argv[0]);
   }
 return 0;
 }


17.png


运行结果


相关文章
|
22天前
|
网络协议 Linux
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
Linux查看端口监听情况,以及Linux查看某个端口对应的进程号和程序
99 2
|
6天前
|
存储 监控 安全
探究Linux操作系统的进程管理机制及其优化策略
本文旨在深入探讨Linux操作系统中的进程管理机制,包括进程调度、内存管理以及I/O管理等核心内容。通过对这些关键组件的分析,我们将揭示它们如何共同工作以提供稳定、高效的计算环境,并讨论可能的优化策略。
13 0
|
18天前
|
Linux
使用qemu来学习Linux的休眠和唤醒
使用qemu来学习Linux的休眠和唤醒
|
18天前
|
Linux
linux内核原子操作学习
linux内核原子操作学习
|
19天前
|
Unix Linux
linux中在进程之间传递文件描述符的实现方式
linux中在进程之间传递文件描述符的实现方式
|
19天前
|
Ubuntu Linux
用crash工具学习Linux内核 —— 查看cgroup_roots
用crash工具学习Linux内核 —— 查看cgroup_roots
|
19天前
|
Ubuntu Linux 调度
Linux内核学习
Linux内核学习
|
20天前
|
开发者 API Windows
从怀旧到革新:看WinForms如何在保持向后兼容性的前提下,借助.NET新平台的力量实现自我进化与应用现代化,让经典桌面应用焕发第二春——我们的WinForms应用转型之路深度剖析
【8月更文挑战第31天】在Windows桌面应用开发中,Windows Forms(WinForms)依然是许多开发者的首选。尽管.NET Framework已演进至.NET 5 及更高版本,WinForms 仍作为核心组件保留,支持现有代码库的同时引入新特性。开发者可将项目迁移至.NET Core,享受性能提升和跨平台能力。迁移时需注意API变更,确保应用平稳过渡。通过自定义样式或第三方控件库,还可增强视觉效果。结合.NET新功能,WinForms 应用不仅能延续既有投资,还能焕发新生。 示例代码展示了如何在.NET Core中创建包含按钮和标签的基本窗口,实现简单的用户交互。
43 0
|
2月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
2月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
68 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)