【双目视觉】 SGBM算法应用(Python版)

简介: 【双目视觉】 SGBM算法应用(Python版)

流程图


15be43e898485515ff1b7018d4c72dcc.png


相机标定


777fcafb94fa4c02a2f3f15ee610c914.jpg


参考链接:【开源 |教程 | 双目测距】双目相机的标定_哔哩哔哩_bilibili


自制的标定数据集,必须用自己相机拍摄照片制作数据集


标定板下载pattern.png (1830×1330) (opencv.org)


072823485421_0left_1.jpg


import cv2
import numpy as np
# -----------------------------------双目相机的基本参数---------------------------------------------------------
#   left_camera_matrix          左相机的内参矩阵
#   right_camera_matrix         右相机的内参矩阵
#
#   left_distortion             左相机的畸变系数    格式(K1,K2,P1,P2,0)
#   right_distortion            右相机的畸变系数
# -------------------------------------------------------------------------------------------------------------
# 左镜头的内参,如焦距
left_camera_matrix = np.array([[516.5066236,-1.444673028,320.2950423],[0,516.5816117,270.7881873],[0.,0.,1.]])
right_camera_matrix = np.array([[511.8428182,1.295112628,317.310253],[0,513.0748795,269.5885026],[0.,0.,1.]])
# 畸变系数,K1、K2、K3为径向畸变,P1、P2为切向畸变
left_distortion = np.array([[-0.046645194,0.077595167, 0.012476819,-0.000711358,0]])
right_distortion = np.array([[-0.061588946,0.122384376,0.011081232,-0.000750439,0]])
# 旋转矩阵
R = np.array([[0.999911333,-0.004351508,0.012585312],
              [0.004184066,0.999902792,0.013300386],
              [-0.012641965,-0.013246549,0.999832341]])
# 平移矩阵
T = np.array([-120.3559901,-0.188953775,-0.662073075])
size = (640, 480)
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion,
                                                                  right_camera_matrix, right_distortion, size, R,
                                                                  T)
# 校正查找映射表,将原始图像和校正后的图像上的点一一对应起来
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_camera_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_camera_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
print(Q)


cv2.stereoRectify()函数


  • 示例:R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion,right_camera_matrix, right_distortion, size, R, T)
  • 作用:为每个摄像头计算立体校正的映射矩阵R1, R2, P1, P2
  • 参数:
  1. left_camera_matrix:左相机内参
  2. left_distortion:左相机畸变系数
  3. right_camera_matrix:右相机内参
  4. right_distortion:右相机畸变系数
  5. size:单边相机的图片分辨率
  6. R:旋转矩阵
  7. T:平移矩阵


  • 返回值:

1.R1, R2:R1-输出矩阵,第一个摄像机的校正变换矩阵(旋转变换);R2-输出矩阵,第二个摄像机的校正变换矩阵(旋转变换)

2.P1, P2:P1-输出矩阵,第一个摄像机在新坐标系下的投影矩阵;P2-输出矩阵,第二个摄像机在新坐标系下的投影矩阵


立体匹配


import numpy as np
import cv2
import random
import math
# 加载视频文件
capture = cv2.VideoCapture("./car.avi")
WIN_NAME = 'Deep disp'
cv2.namedWindow(WIN_NAME, cv2.WINDOW_AUTOSIZE)
# 读取视频
fps = 0.0
ret, frame = capture.read()
while ret:
    # 开始计时
    t1 = time.time()
    # 是否读取到了帧,读取到了则为True
    ret, frame = capture.read()
    # 切割为左右两张图片
    frame1 = frame[0:480, 0:640]
    frame2 = frame[0:480, 640:1280]
    # 将BGR格式转换成灰度图片,用于畸变矫正
    imgL = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
    imgR = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
    # 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程。
    # 依据MATLAB测量数据重建无畸变图片,输入图片要求为灰度图
    img1_rectified = cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR)
    img2_rectified = cv2.remap(imgR, right_map1, right_map2, cv2.INTER_LINEAR)
    # 转换为opencv的BGR格式
    imageL = cv2.cvtColor(img1_rectified, cv2.COLOR_GRAY2BGR)
    imageR = cv2.cvtColor(img2_rectified, cv2.COLOR_GRAY2BGR)
    # ------------------------------------SGBM算法----------------------------------------------------------
    #   blockSize                   深度图成块,blocksize越低,其深度图就越零碎,0<blockSize<10
    #   img_channels                BGR图像的颜色通道,img_channels=3,不可更改
    #   numDisparities              SGBM感知的范围,越大生成的精度越好,速度越慢,需要被16整除,如numDisparities
    #                               取16、32、48、64等
    #   mode                        sgbm算法选择模式,以速度由快到慢为:STEREO_SGBM_MODE_SGBM_3WAY、
    #                               STEREO_SGBM_MODE_HH4、STEREO_SGBM_MODE_SGBM、STEREO_SGBM_MODE_HH。精度反之
    # ------------------------------------------------------------------------------------------------------
    blockSize = 8
    img_channels = 3
    stereo = cv2.StereoSGBM_create(minDisparity=1,
                                   numDisparities=64,
                                   blockSize=blockSize,
                                   P1=8 * img_channels * blockSize * blockSize,
                                   P2=32 * img_channels * blockSize * blockSize,
                                   disp12MaxDiff=-1,
                                   preFilterCap=1,
                                   uniquenessRatio=10,
                                   speckleWindowSize=100,
                                   speckleRange=100,
                                   mode=cv2.STEREO_SGBM_MODE_HH)
    # 计算视差
    disparity = stereo.compute(img1_rectified, img2_rectified)
    # 归一化函数算法,生成深度图(灰度图)
    disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
    # 生成深度图(颜色图)
    dis_color = disparity
    dis_color = cv2.normalize(dis_color, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
    dis_color = cv2.applyColorMap(dis_color, 2)
    # 计算三维坐标数据值
    threeD = cv2.reprojectImageTo3D(disparity, Q, handleMissingValues=True)
    # 计算出的threeD,需要乘以16,才等于现实中的距离
    threeD = threeD * 16
    # 鼠标回调事件
    cv2.setMouseCallback("depth", onmouse_pick_points, threeD)
    #完成计时,计算帧率
    fps = (fps + (1. / (time.time() - t1))) / 2
    frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
    cv2.imshow("depth", dis_color)
    cv2.imshow("left", frame1)
    cv2.imshow(WIN_NAME, disp)  # 显示深度图的双目画面
    # 若键盘按下q则退出播放
    if cv2.waitKey(20) & 0xff == ord('q'):
        break
# 释放资源
capture.release()
# 关闭所有窗口
cv2.destroyAllWindows()


  • img1_rectified = cv2.remap(imgL, left_map1, left_map2, cv2.INTER_LINEAR):重映射,即把一幅图像内的像素点放置到另外一幅图像内的指定位置,俗称“拼接”


我们可以通过cv.remap()函数来将img2映射到img1对应位置上并合成


766bd263b9aa3534df9ffa56c65eca17.png

0982b08a358ca6d40f2281b3befb5365.png


  • cv2.StereoSGBM_create()函数为opencv集成的算法;我们只需关注blockSize。 使用方法为:


508ff3d3c6985b72c74fdefd24c45026.png


其中,调小numDisparities会降低精度,但提高速度。注意:numDisparities需能被16整除


mode可以设置为STEREO_SGBM_MODE_SGBM_3WAY ,STEREO_SGBM_MODE_HH, STEREO_SGBM_MODE_SGBM, STEREO_SGBM_MODE_HH4四种模式,它们的精度和速度呈反比,可根据情况来选择不同的模式.STEREO_SGBM_MODE_HH4的速度最快,STEREO_SGBM_MODE_HH的精度最好


效果


1.原图像


e53e0161ac16980ff13a9cb1f3b4df8f.jpg


2.深度图


e3b401f5d736643527dc3ab72aa77386.png

e4ca1fe6943973e52ca7624143242f77.png


3.代码链接


https://github.com/yzfzzz/Stereo-Detection

相关文章
|
4天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
28 6
|
5天前
|
数据采集 数据安全/隐私保护 开发者
非阻塞 I/O:异步编程提升 Python 应用速度
非阻塞 I/O:异步编程提升 Python 应用速度
|
5天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
31 7
|
5天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
21 4
|
6天前
|
机器学习/深度学习 数据可视化 数据处理
Python在数据科学中的应用###
本文探讨了Python语言在数据科学领域的广泛应用及其重要性。通过分析Python的简洁语法、强大的库支持和跨平台特性,阐述了为何Python成为数据科学家的首选工具。文章还介绍了Python在数据处理、分析和可视化方面的具体应用实例,展示了其在提升工作效率和推动科学研究方面的巨大潜力。最后,讨论了未来Python在数据科学领域的发展趋势和挑战。 ###
|
6天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
10 3
|
7天前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器解析与应用###
【10月更文挑战第22天】 本文将带你走进Python装饰器的世界,揭示其背后的魔法。我们将一起探索装饰器的定义、工作原理、常见用法以及如何自定义装饰器,让你的代码更加简洁高效。无论你是Python新手还是有一定经验的开发者,相信这篇文章都能为你带来新的启发和收获。 ###
8 1
|
8天前
|
调度 开发者 Python
异步编程在Python中的应用:Asyncio和Coroutines
异步编程在Python中的应用:Asyncio和Coroutines
11 1
|
9天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
27 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
5 0