C++——内存分配与动态内存管理

简介: C++——内存分配与动态内存管理

000000000000000000000000000000、.png

目录


C/C++内存分布

牛刀小试

C语言动态内存管理

C++动态内存管理

对于内置类型

对于自定义类型

operator new与operator delete函数

new与delete的实现原理

对于内置类型

对于自定义类型

对于调用析构函数的理解

定位new表达式

总结

malloc/free和new/delete的区别


文章导读


本章我们将学习C++的内存分配动态内存管理。理解new/delete的用法与实现的原理,并简单了解定位new表达式


正文


C/C++内存分布


在C语言阶段,我们已经学习过内存分布,认识了什么是堆、堆栈、静态区、常量区等。如下图

1.png

我们再次认识一下这几个区域:


栈:又叫堆栈,主要存放非静态局部变量、函数参数、返回值等等,栈是向下增长的;

内存映射段:是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。(Linux系列文章中有讲解);

堆:用于程序运行时动态内存分配,堆是可以上增长的;

数据段:存储全局数据和静态数据;

代码段:存储可执行的代码与只读常量;


牛刀小试


我们可以通过以下测试例题来检验自己是否还清晰的记得C语言内存分配的知识。

🌼测试例题

#include<stdio.h>
#include<stdlib.h>
int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
  static int staticVar = 1;
  int localVar = 1;
  int num1[10] = { 1, 2, 3, 4 };
  char char2[] = "abcd";
  const char* pChar3 = "abcd";
  int* ptr1 = (int*)malloc(sizeof(int) * 4);
  int* ptr2 = (int*)calloc(4, sizeof(int));
  int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
  free(ptr1);
  free(ptr3);
}

选择题:

选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

globalVar在哪里?____ staticGlobalVar在哪里?____

staticVar在哪里?____ localVar在哪里?____

num1在哪里?____


char2在哪里?____ *char2在哪里?___

pChar3在哪里?____ *pChar3在哪里?____

ptr1在哪里?____ *ptr1在哪里?____


填空题:

sizeof(num1) = ____; sizeof(char2) = ____;

strlen(char2) = ____; sizeof(pChar3) = ____;

strlen(pChar3) = ____;sizeof(ptr1) = ____;


🌼答案

从左至右,从上至下给出:

CCCAA AAADAB 40 5 4 4/8 4 4/8


C语言动态内存管理


C语言动态内存管理在我之前的文章中已经详细介绍过


C++动态内存管理


C++在C语言的基础上引进了新的动态内存管理的方式——通过newdelete操作符进行动态内存管理。


对于内置类型


对于内置类型。new/deletemalloc/free几乎是一样的。

  • 动态申请一个int类型的空间;
  //int* p1 = (int*)malloc(sizeof(int)); //C
  int* p1 = new int;  //C++
  • 动态申请一个int类型的空间并初始化为10
int* p2 = new int(10);
  cout << *p2 << endl;

2.png

  • 动态申请10int类型的空间;
int* p3 = new int[10];
  • 释放空间
  //free(p1) //C
  //释放单个元素的空间
  delete p1;
  delete p2;
  //释放多个元素的空间
  delete[] p3;


对于自定义类型


对于自定义类型,new/deletemalloc/free的最大区别是 new/delete对于自定义类型除了申请/释放空间还会调用对应的构造函数析构函数

class A
{
public:
  A()
  {
    cout << "A()" << endl;
  }
  ~A()
  {
    cout << "~A()" << endl;
  }
private:
  int _a;
};
  • malloc与free
A* p4 = (A*)malloc(sizeof(A));
  free(p4);
  • new与delete
A* p5 = new A;
  delete p5;

4.png


operator new与operator delete函数


newdelete是用户进行动态内存申请和释放的操作符operator newoperator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

🍁那么operator new与operator delete又是什么呢?

  • operator new其实是对malloc进行封装后的产物;

之前我们使用malloc函数申请空间时,有非常重要的一点就是要对malloc申请的结果做检查。如果malloc申请失败会返回空指针

🌼示例1

  int* a = (int*)malloc(sizeof(int));
  if (a == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }

每次都要对返回值进行检查,未免感到有点麻烦。在C++中,系统通过对malloc申请与检查的工作进行封装推出了operator new函数。当operator new申请空间失败时,会通过抛异常(之后会将)的方式告诉用户。

🌼示例2

  // 失败了抛异常
  int* p1 = (int*)operator new(sizeof(int*));


  • operator delete作用与free相同;

🌼示例3

int* p1 = (int*)operator new(sizeof(int*));
  operator delete(p1);


new与delete的实现原理


对于内置类型


如果申请的是内置类型的空间,new/mallocdelete/free基本类似,不同的地方是:

  • new/delete申请和释放的是单个元素的空间,new[]delete[]申请的是连续空间;
  • new在申请空间失败时会抛异常malloc会返回NULL


对于自定义类型


🍁new的原理

  1. 调用operator new函数申请空间;
  2. 在申请的空间上执行构造函数,完成对象的构造;

🍁delete的原理

  1. 在申请的空间上执行析构函数,完成对象中资源的清理工作;
  2. 调用operator delete函数释放对象的空间;

🍁new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请;
  2. 在申请的空间上执行N次构造函数

🍁delete[]的原理

3. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理;

4. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间;


对于调用析构函数的理解


有的小伙伴可能并不清楚为什么要执行析构函数再执行operator delete函数,请思考一下,二者的操作对象是同一个空间吗?

答案:

  • 析构函数对象调用的,目的是清理对象内部申请的资源(例如:动态开辟的数组、自定义类型的变量等);
  • operator delete是用来释放存储对象所在的空间

通俗的理解就是:我申请了一块空间A,并将A的地址交给指针变量P保存,A里面存储了一个对象。但是对象内部又申请了一块空间B,B里面存储了一些其它的数据。当我们delete p时,不能直接释放A,因为A里面存储的对象又申请了一块空间B,我们得首先释放B,不然B就无法释放了。释放B需要对象来调用它的析构函数,B成功的释放了,接下来释放A,调用operator delete来释放A。

🌼示例

定义一个类:

class stack
{
public:
  stack()
    :_size(0),
    _capacity(0)
  {
    _a = new int[10];
    cout << "stack()" << endl;
  }
  ~stack()
  {
    cout << "~stack()" << endl;
  }
private:
  int* _a;
  int _size;
  int _capacity;
};

new一个对象并释放:

void Test()
{
  stack* ps = new stack;
  delete ps;
}

3.png


定位new表达式


定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象

🍁使用场景

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

🌼示例

class A
{
public:
  A(int a = 0)
    : _a(a)
  {
    cout << "A()" << this << endl;
  }
  ~A()
  {
    cout << "~A()" << this << endl;
  }
private:
  int _a;
};
void Test5()
{
  A* p1 = (A*)malloc(sizeof(A));// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没有执行
  new(p1)A; //注意:如果A的构造函数有参数时需要传参new(p1)(参数列表)
  p1->~A();
  free(p1);
  A* p2 = (A*)operator new(sizeof(A));
  new(p2)A(10);
  p2->~A();
  operator delete(p2);
}


总结


malloc/free和new/delete的区别


malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:


malloc和free是函数,new和delete是操作符;

malloc申请的空间不会初始化,new可以初始化;

malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可;

malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型;

malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常;

申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理;


目录
相关文章
|
23天前
|
存储 编译器 C语言
内存管理【C++】
内存管理【C++】
38 1
|
1月前
|
存储 编译器 C语言
【C++】C\C++内存管理
【C++】C\C++内存管理
【C++】C\C++内存管理
|
11天前
|
监控 Java 大数据
【Java内存管理新突破】JDK 22:细粒度内存管理API,精准控制每一块内存!
【9月更文挑战第9天】虽然目前JDK 22的确切内容尚未公布,但我们可以根据Java语言的发展趋势和社区的需求,预测细粒度内存管理API可能成为未来Java内存管理领域的新突破。这套API将为开发者提供前所未有的内存控制能力,助力Java应用在更多领域发挥更大作用。我们期待JDK 22的发布,期待Java语言在内存管理领域的持续创新和发展。
|
11天前
|
存储 并行计算 算法
CUDA统一内存:简化GPU编程的内存管理
在GPU编程中,内存管理是关键挑战之一。NVIDIA CUDA 6.0引入了统一内存,简化了CPU与GPU之间的数据传输。统一内存允许在单个地址空间内分配可被两者访问的内存,自动迁移数据,从而简化内存管理、提高性能并增强代码可扩展性。本文将详细介绍统一内存的工作原理、优势及其使用方法,帮助开发者更高效地开发CUDA应用程序。
|
1月前
|
存储 Java 程序员
JVM自动内存管理之运行时内存区
这篇文章详细解释了JVM运行时数据区的各个组成部分及其作用,有助于理解Java程序运行时的内存布局和管理机制。
JVM自动内存管理之运行时内存区
|
28天前
|
Linux 测试技术 C++
内存管理优化:内存泄漏检测与预防。
内存管理优化:内存泄漏检测与预防。
34 2
|
6天前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
17 0
|
1月前
|
编译器 C++
virtual类的使用方法问题之C++类中的非静态数据成员是进行内存对齐的如何解决
virtual类的使用方法问题之C++类中的非静态数据成员是进行内存对齐的如何解决
|
16天前
|
C语言 C++
C++(二)内存管理
本文档详细介绍了C++中的内存管理机制,特别是`new`和`delete`关键字的使用方法。首先通过示例代码展示了如何使用`new`和`delete`进行单个变量和数组的内存分配与释放。接着讨论了内存申请失败时的处理方式,包括直接抛出异常、使用`try/catch`捕获异常、设置`set_new_handler`函数以及不抛出异常的处理方式。通过这些方法,可以有效避免内存泄漏和多重释放的问题。
|
1月前
|
存储 Java C语言
【C++】C/C++内存管理
【C++】C/C++内存管理

热门文章

最新文章