JVM:并发的可达性分析

简介: 当前主流编程语言的垃圾收集器基本上都是依靠可达性分析算法来判定对象是否存活的

当前主流编程语言的垃圾收集器基本上都是依靠可达性分析算法来判定对象是否存活的,可达性分析算法理论上要求全过程都基于一个能保障一致性的快照中才能够进行分析,这意味着必须全程冻结用户线程的运行。

  • 在根节点枚举这个步骤中,由于 GC Roots 相比起整个 Java 堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如 OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长) 的了。
  • 可从 GC Roots 再继续往下遍历对象图,这一步骤的停顿时间就必定会与 Java 堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长。

要知道包含 “标记” 阶段是所有追踪式垃圾收集算法的共同特征,如果这个阶段会随着堆变大而等比例增加停顿时间,其影响就会波及几乎所有的垃圾收集器,同理可知,如果能够削减这部分停顿时间的话,那收益也将会是系统性的。

想解决或者降低用户线程的停顿,就要先搞清楚为什么必须在一个能保障一致性的快照上才能进行对象图的遍历?为了能解释清楚这个问题,我们引入三色标记(Tri-color Marking)作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照 “是否访问过” 这个条件标记成以下三种颜色:

  • 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
  • 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象) 指向某个白色对象。
  • 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。

关于可达性分析的扫描过程,可以发挥一下想象力,把它看作对象图上一股以灰色为波峰的波纹从黑向白推进的过程。如果用户线程此时是冻结的,只有收集器线程在工作,那不会有任何问题。但如果用户线程与收集器是并发工作呢?收集器在对象图上标记颜色,同时用户线程在修改引用关系(即修改对象图的结构),这样可能出现两种后果。

  • 一种是把原本消亡的对象错误标记为存活(即原本应该是白色的对象被误标为黑色),这不是好事,但其实这种情况是可以容忍的,只不过产生了一点逃过本次收集的浮动垃圾而已,下次收集清理掉就好。
  • 另一种是把原本存活的对象错误标记为已消亡(即原本应该是黑色的对象被误标为白色),这就是非常致命的后果了,程序肯定会因此发生错误,下图演示了这样的致命错误具体是如何产生的。

image-20230222225942722.png

Wilson 于 1994 年在理论上证明了,当且仅当以下两个条件同时满足时,会产生 “对象消失” 的问题,即原本应该是黑色的对象被误标为白色:

  • 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
  • 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。

因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning,SATB)。

  • 增量更新要破坏的是第一个条件,当要插入黑色对象指向白色对象的引用关系时,就将这个新插入的引用记录下来, 等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
  • 原始快照要破坏的是第二个条件,当要删除灰色对象指向白色对象的引用关系时,就将这个要删除的引用记录下来, 等并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。

以上无论是对引用关系记录的插入还是删除,虚拟机的记录操作都是通过写屏障实现的。

在 HotSpot 虚拟机中,增量更新和原始快照这两种解决方案都有实际应用,譬如,CMS 是基于增量更新来做并发标记的,G1、Shenandoah 则是用原始快照来实现。

参考资料

《深入理解Java虚拟机》第 3 章:垃圾收集器与内存分配策略 3.4.6 并发的可达性分析

相关文章
|
22天前
|
小程序 Oracle Java
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
这篇文章是关于JVM基础知识的介绍,包括JVM的跨平台和跨语言特性、Class文件格式的详细解析,以及如何使用javap和jclasslib工具来分析Class文件。
33 0
JVM知识体系学习一:JVM了解基础、java编译后class文件的类结构详解,class分析工具 javap 和 jclasslib 的使用
|
29天前
|
存储 Java PHP
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
46 0
|
4月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
|
4月前
|
Java
jmap 查看jvm内存大小并进行dump文件内存分析
jmap 查看jvm内存大小并进行dump文件内存分析
80 3
|
3月前
|
监控 JavaScript Java
JVM源码级别分析G1发生FullGC元凶的是什么
线上系统遭遇频繁Old GC问题,监控显示出现多次“to-space exhausted”日志,这表明垃圾回收过程中因年轻代 Survivor 区或老年代空间不足导致对象晋升失败。通过 JVM 源码分析,此问题源于对象转移至老年代失败时,JVM 无法找到足够的空间存放存活对象。进一步排查发现大对象分配占用了预留空间,加剧了空间不足的情况。使用 JFR 分析工具定位到定期报表序列化导致大量大对象生成,通过改用堆外内存进行序列化输出,最终解决了频繁 Old GC 问题。
|
22天前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
33 4
|
22天前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
45 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
25天前
|
存储 缓存 算法
JVM核心知识点整理(内存模型),收藏再看!
JVM核心知识点整理(内存模型),收藏再看!
JVM核心知识点整理(内存模型),收藏再看!
|
12天前
|
存储 算法 Java
聊聊jvm的内存结构, 以及各种结构的作用
【10月更文挑战第27天】JVM(Java虚拟机)的内存结构主要包括程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和运行时常量池。各部分协同工作,为Java程序提供高效稳定的内存管理和运行环境,确保程序的正常执行、数据存储和资源利用。
37 10
|
11天前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。