内测邀请!达摩院 MindOpt Tuner 调参器新功能

简介: 最近阿里巴巴达摩院的MindOpt团队开发了一款优化调参器,叫做MindOpt Tuner。它是一种自动优化工具,可帮助运筹优化工程师在使用求解器时自动搜索最佳参数组合。我们非常重视用户反馈和测试,因此希望能够邀请您成为MindOpt Tuner的测试用户之一。我们在 MIPLIB2017 Benchmark Set 上进行了测试。测试结果显示,经过调参后的Cbc求解器的速度可以有显著的提升:使用默认参数需要几十分钟解出的问题,调参后可以在1分钟内解出。

调参新功能


最近MindOpt团队开发了一款优化调参器,叫做MindOpt Tuner。它是一种自动优化工具,可帮助运筹优化工程师在使用求解器时自动搜索最佳参数组合。


优化求解器往往拥有很多配置参数,例如启发式方法的开关、割平面方法的开关、预处理的配置以及各种误差容忍度等等。MindOpt Tuner会尝试不同的参数组合,评估每组参数的性能,然后基于这些结果来确定最佳参数。这样可以大大减少手动调整参数的时间和精力,并且可以帮助提升求解性能。不同于常见的贪心算法、遗传算法、粒子群算法等调参算法,MindOpt Tuner使用了团队新研发的快速算法,只需要相对少的评估就能给出性能很好的参数。

image.png


内测参与方式


我们非常重视用户反馈和测试,因此希望能够邀请您成为MindOpt Tuner的测试用户之一。


用户入口:您可以在MindOpt的云平台上通过Jupyter Notebook和网页提交的两种方式来提交调参任务,任务提交后,参数评估的工作将在平台的后端集群中自动进行并完成。评估完成后会返回最佳参数,以及提速倍数。

参与要求:拥有阿里云账号(钉钉扫码登录就能获得阿里云账号啦)

参与方式:

方式1:在钉钉答疑群钉钉群:32451444,私聊群主 悠悠喵喵(钉钉号:wy186633) 或者 管理员向金平(钉钉号:hw2-wwffqg05p),然后告知阿里云UID号。

方式2:把阿里云UID号发送邮箱:solver.damo@list.alibaba-inc.com

阿里云UID号获取方式:登录MindOpt平台https://opt.aliyun.com/,然后鼠标hover头像上就获得了UID。如下是群主的UID。

image.png


测试阶段开放功能

测试阶段支持对开源的COIN-OR Cbc V2.10.5混合整数优化求解器进行调参。如果您对调参或者Cbc感兴趣,那么这将是一个非常好的机会,您可以在测试中亲身体验我们的产品,欢迎您提出宝贵的反馈和建议。


我们在 MIPLIB2017 Benchmark Set 上进行了测试。测试结果显示,经过调参后的Cbc求解器的速度可以有显著的提升:使用默认参数需要几十分钟解出的问题,调参后可以在1分钟内解出。部分实验结果如下:


算例名称

用默认参数的求解时间(秒)

用调参后参数的求解时间(秒)

加速倍数

eil33-2

103.61

3.01

34.42

neos-950242

845.0

31.49

26.83

hypothyroid-k1

1343.4

112.34

11.96

decomp2

40.34

4.19

9.63

neos-860300

55.70

4.03

13.82

irp

27.86

2.64

10.55

fiball

738.36

49.62

14.88

qap10

171.28

15.29

11.2

drayage-100-23

44.37

4.23

10.49

此测试采用了MindOpt Tuner V0.9.0来调参,求解器运行时的机器环境是:

Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, 8 cores, 16 GB RAM, Ubuntu 18.04。


image.png

目录
相关文章
|
4月前
|
达摩院 供应链 安全
光储荷经济性调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍使用MindOpt工具优化光储荷经济性调度的数学规划问题。光储荷经济性调度技术旨在最大化能源利用率和经济效益,应用场景包括分布式光伏微网、家庭能源管理系统、商业及工业用电、电力市场参与者等。文章详细阐述了如何通过数学规划方法解决虚拟电厂中的不确定性与多目标优化难题,并借助MindOpt云建模平台、MindOpt APL建模语言及MindOpt优化求解器实现问题建模与求解。最终案例展示了如何通过合理充放电策略减少37%的电费支出,实现经济与环保双重效益。读者可通过提供的链接获取完整源代码。
|
4月前
|
达摩院 BI 索引
切割问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文主要讲述了使用MindOpt工具对切割问题进行优化的过程与实践。切割问题是指从一维原材料(如木材、钢材等)中切割出特定长度的零件以满足不同需求,同时尽可能减少浪费的成本。文章通过实例详细介绍了如何使用MindOpt云上建模求解平台及其配套的MindOpt APL建模语言来解决此类问题,包括数学建模、代码实现、求解过程及结果分析等内容。此外,还讨论了一维切割问题的应用场景,并对其进行了扩展,探讨了更复杂的二维和三维切割问题。通过本文的学习,读者能够掌握利用MindOpt工具解决实际切割问题的方法和技术。
|
4月前
|
达摩院 算法 安全
智慧楼宇多目标调度问题【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了使用MindOpt工具优化智慧楼宇的多目标调度问题,特别是在虚拟电厂场景下的应用。智慧楼宇通过智能化技术综合考虑能耗、舒适度等多目标,实现楼宇设备的有效管理和调度。虚拟电厂作为多能源聚合体,能够参与电力市场,提供调峰、调频等辅助服务。文章介绍了如何使用MindOpt云上建模求解平台及MindOpt APL建模语言对楼宇多目标调度问题进行数学建模和求解,旨在通过优化储能设备的充放电操作来最小化用电成本、碳排放成本和功率变化成本,从而实现经济、环保和电网稳定的综合目标。最终结果显示,在使用储能设备的情况下,相比不使用储能设备的情形,成本节约达到了约48%。
|
4月前
|
达摩院 供应链 JavaScript
网络流问题--仓储物流调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文通过使用MindOpt工具优化仓储物流调度问题,旨在提高物流效率并降低成本。首先,通过考虑供需匹配、运输时间与距离、车辆容量、仓库储存能力等因素构建案例场景。接着,利用数学规划方法,包括线性规划和网络流问题,来建立模型。在网络流问题中,通过定义节点(资源)和边(资源间的关系),确保流量守恒和容量限制条件下找到最优解。文中还详细介绍了MindOpt Studio云建模平台和MindOpt APL建模语言的应用,并通过实例展示了如何声明集合、参数、变量、目标函数及约束条件,并最终解析了求解结果。通过这些步骤,实现了在满足各仓库需求的同时最小化运输成本的目标。
|
5月前
|
人工智能 算法 调度
优化问题之如何选择合适的优化求解器
优化问题之如何选择合适的优化求解器
|
5月前
|
达摩院 安全 调度
网络流问题--交通调度【数学规划的应用(含代码)】阿里达摩院MindOpt
本文探讨了如何利用数学规划工具MindOpt解决交通调度问题。交通调度涉及网络流分析,考虑道路容量、车辆限制、路径选择等因素,以实现高效运行。通过建立数学模型,利用MindOpt云平台和建模语言MAPL,设定流量最大化目标并确保流量守恒,解决实际的调度问题。案例展示了如何分配车辆从起点到终点,同时满足道路容量约束。MindOpt Studio提供在线开发环境,支持模型构建和求解,帮助优化大规模交通调度。
|
5月前
|
达摩院
人员排班【数学规划的应用(含代码)】阿里达摩院MindOpt
本文介绍了使用阿里巴巴达摩院的MindOpt工具解决人员排班的数学规划问题。人员排班在多个行业中至关重要,如制造业、医疗、餐饮和零售等。问题涉及多种约束,包括工作需求、员工能力、工作时间限制、连续工作天数及公平性。通过MindOpt云建模平台和建模语言MindOpt APL,建立数学模型并编写代码来解决最小化总上班班次的问题。案例中展示了如何声明集合、参数、变量和约束,并给出了部分代码示例。最后,通过MindOpt求解器得到最优解,并将结果输出到CSV文件中。
|
5月前
|
存储 达摩院 供应链
排产排程问题【数学规划的应用(含代码)】阿里达摩院MindOpt
**文章摘要:** 本文探讨了使用阿里巴巴达摩院的MindOpt优化求解器解决制造业中的排产排程问题。排产排程涉及物料流动、工序安排、设备调度等多个方面,通常通过数学规划方法建模。MindOpt支持线性规划、整数规划等,能有效处理大规模数据。案例以香皂制造工厂为例,考虑了多种油脂的购买、存储和生产计划,以及价格变化和存储成本。问题通过数学建模转化为MindOpt APL代码,求解器自动寻找最优解,以最大化利润。文章还提供了代码解析,展示了解决方案的细节,包括目标函数(利润最大化)、约束条件(如生产效率、库存管理)以及结果分析。
|
6月前
|
达摩院 Python
阿里达摩院MindOpt优化求解器-月刊(2024年6月)
**阿里达摩院MindOpt优化求解器2024年6月月刊概览:** - 发布新功能,MAPL建模语言V2.5上线,Python APIs全面升级,旧版本不兼容。 提供快速入门教程、示例代码展示如何用Python调用MAPL。MindOpt Studio租户版新增Gradio支持,便于开发WebAPP,提供了案例源码展示如何开发。引入新案例: 1. 巡检线路的排班-2017全国大学生数学建模竞赛D题。包含最短路模型、TSP模型、弧分割模型。2. 商品组合定价策略:探讨如何最赚钱的加购区商品定价。
135 0
|
6月前
|
达摩院 供应链 调度
【FlowShop流水线作业排班问题【数学规划的应用(含代码)】阿里达摩院MindOpt】
本文探讨了使用阿里巴巴达摩院的MindOpt工具解决FlowShop流水线作业排班的数学规划问题。FlowShop涉及到多台机器、多个工序和多个作业,目标是通过优化排班最小化总生产耗时。MindOpt通过数学规划方法,如线性或混合整数线性规划,将问题建模并转化为代码,利用云建模平台MindOpt Studio和MindOpt APL建模语言进行求解。案例中详细介绍了参数定义、变量解析、约束设置和目标函数,展示了如何通过MindOpt进行建模和求解,以达到最优化的生产调度。此外,文章还提供了代码示例和结果解析,帮助读者理解如何实际应用MindOpt解决这类问题。