解析 RocketMQ 业务消息--“顺序消息”

简介: 本篇将继续业务消息集成的场景,从功能原理、应用案例、最佳实践以及实战等角度介绍 RocketMQ 的顺序消息功能。

作者:绍舒


引言


Apache RocketMQ 诞生至今,历经十余年大规模业务稳定性打磨,服务了阿里集团内部业务以及阿里云数以万计的企业客户。作为金融级可靠的业务消息方案,RocketMQ 从创建之初就一直专注于业务集成领域的异步通信能力构建。本篇将继续业务消息集成的场景,从功能原理、应用案例、最佳实践以及实战等角度介绍 RocketMQ 的顺序消息功能。


简介


顺序消息是消息队列 RocketMQ 版提供的一种对消息发送和消费顺序有严格要求的消息。对于一个指定的 Topic,同一 MessageGroup 的消息按照严格的先进先出(FIFO)原则进行发布和消费,即先发布的消息先消费,后发布的消息后消费,服务端严格按照发送顺序进行存储、消费。同一 MessageGroup 的消息保证顺序,不同 MessageGroup 之间的消息顺序不做要求,因此需做到两点,发送的顺序性和消费的顺序性。


1.jpeg


功能原理


在这里首先抛出一个问题,在日常的接触中,许多 RocketMQ 使用者会认为,既然顺序消息能在普通消息的基础上实现顺序,看起来就是普通消息的加强版,那么为什么不全部都使用顺序消息呢?接下来就会围绕这个问题,对比普通消息和顺序消息进行阐述。


顺序发送


在分布式环境下,保证消息的全局顺序性是十分困难的,例如两个 RocketMQ Producer A 与 Producer B,它们在没有沟通的情况下各自向 RocketMQ 服务端发送消息 a 和消息 b,由于分布式系统的限制,我们无法保证 a 和 b 的顺序。因此业界消息系统通常保证的是分区的顺序性,即保证带有同一属性的消息的顺序,我们将该属性称之为 MessageGroup。如图所示,ProducerA 发送了 MessageGroup 属性为 A 的两条消息 A1,A2 和 MessageGroup 属性为 B 的 B1,B2,而 ProducerB 发送了 MessageGroup 属性为 C 的两条属性 C1,C2。


2.jpeg


同时,对于同一 MessageGroup,为了保证其发送顺序的先后性,比较简单的做法是构造一个单线程的场景,即不同的 MessageGroup 由不同的 Producer 负责,并且对于每一个 Producer 而言,顺序消息是同步发送的。同步发送的好处是显而易见的,在客户端得到上一条消息的发送结果后再发送下一条,即能准确保证发送顺序,若使用异步发送或多线程则很难保证这一点。 


3.png


因此可以看到,虽然在底层原理上,顺序消息发送和普通消息发送并无二异,但是为了保证顺序消息的发送顺序性,同步发送的方式相比较普通消息,实际上降低了消息的最大吞吐。


顺序消费


与顺序消息不同的是,普通消息的消费实际上没有任何限制,消费者拉取的消息是被异步、并发消费的,而顺序消息,需要保证对于同一个 MessageGroup,同一时刻只有一个客户端在消费消息,并且在该条消息被确认消费完成之前(或者进入死信队列),消费者无法消费同一 MessageGroup 的下一条消息,否则消费的顺序性将得不到保证。因此这里存在着一个消费瓶颈,该瓶颈取决于用户自身的业务处理逻辑。极端情况下当某一 MessageGroup 的消息过多时,就可能导致消费堆积。当然也需要明确的是,这里的语境都指的是同一 MessageGroup,不同 MessageGroup 的消息之间并不存在顺序性的关联,是可以进行并发消费的。因此全文中提到的顺序实际上是一种偏序。


4.png


小结


无论对于发送还是消费,我们通过 MessageGroup 的方式将消息分组,即并发的基本单元是 MessageGroup,不同的 MessageGroup 可以并发的发送和消费,从而一定程度具备了可拓展性,支持多队列存储、水平拆分、并发消费,且不受影响。回顾普通消息,站在顺序消息的视角,可以认为普通消息的并发基本单元是单条消息,即每条消息均拥有不同的 MessageGroup。


我们回到开头那个问题:


既然顺序消息能在普通消息的基础上实现顺序,看起来就是普通消息的加强版,那么为什么不全部都使用顺序消息呢?


现在大家对于这个问题可能有一个基本的印象了,消息的顺序性当然很好,但是为了实现顺序性也是有代价的。


下述是一个表格,简要对比了顺序消息和普通消息。


5.jpeg


最佳实践


合理设置 MessageGroup


MessageGroup 会有很多错误的选择,以某电商平台为例,某电商平台将商家 ID 作为 MessageGroup,因为部分规模较大的商家会产出较多订单,由于下游消费能力的限制,因此这部分商家所对应的订单就发生了严重的堆积。正确的做法应当是将订单号作为 MessageGroup,而且站在背后的业务逻辑上来说,同一订单才有顺序性的要求。即选择 MessageGroup 的最佳实践是:MessageGroup 生命周期最好较为短暂,且不同 MessageGroup 的数量应当尽量相同且均匀。


同步发送和发送重试


如之前章节所述,需使用同步发送和发送重试来保证发送的顺序性。


消费幂等


消息传输链路在异常场景下会有少量重复,业务消费是需要做消费幂等,避免重复处理带来的风险。


应用案例


  • 用户注册需要发送验证码,以用户 ID 作为 MessageGroup,那么同一个用户发送的消息都会按照发布的先后顺序来消费。
     
  • 电商的订单创建,以订单 ID 作为 MessageGroup,那么同一个订单相关的创建订单消息、订单支付消息、订单退款消息、订单物流消息都会按照发布的先后顺序来消费。
     

6.png


实战


发送


可以看到,该发送案例设置了 MessageGroup 并且使用了同步发送,发送的代码如下:


public class ProducerFifoMessageExample {
    private static final Logger LOGGER = LoggerFactory.getLogger(ProducerFifoMessageExample.class);
    private ProducerFifoMessageExample() {
    }
    public static void main(String[] args) throws ClientException, IOException {
        final ClientServiceProvider provider = ClientServiceProvider.loadService();
        // Credential provider is optional for client configuration.
        String accessKey = "yourAccessKey";
        String secretKey = "yourSecretKey";
        SessionCredentialsProvider sessionCredentialsProvider =
            new StaticSessionCredentialsProvider(accessKey, secretKey);
        String endpoints = "foobar.com:8080";
        ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()
            .setEndpoints(endpoints)
            .setCredentialProvider(sessionCredentialsProvider)
            .build();
        String topic = "yourFifoTopic";
        final Producer producer = provider.newProducerBuilder()
            .setClientConfiguration(clientConfiguration)
            // Set the topic name(s), which is optional. It makes producer could prefetch the topic route before 
            // message publishing.
            .setTopics(topic)
            // May throw {@link ClientException} if the producer is not initialized.
            .build();
        // Define your message body.
        byte[] body = "This is a FIFO message for Apache RocketMQ".getBytes(StandardCharsets.UTF_8);
        String tag = "yourMessageTagA";
        final Message message = provider.newMessageBuilder()
            // Set topic for the current message.
            .setTopic(topic)
            // Message secondary classifier of message besides topic.
            .setTag(tag)
            // Key(s) of the message, another way to mark message besides message id.
            .setKeys("yourMessageKey-1ff69ada8e0e")
            // Message group decides the message delivery order.
            .setMessageGroup("youMessageGroup0")
            .setBody(body)
            .build();
        try {
            final SendReceipt sendReceipt = producer.send(message);
            LOGGER.info("Send message successfully, messageId={}", sendReceipt.getMessageId());
        } catch (Throwable t) {
            LOGGER.error("Failed to send message", t);
        }
        // Close the producer when you don't need it anymore.
        producer.close();
    }
}


消费


消费的代码如下:


public class SimpleConsumerExample {
    private static final Logger LOGGER = LoggerFactory.getLogger(SimpleConsumerExample.class);
    private SimpleConsumerExample() {
    }
    public static void main(String[] args) throws ClientException, IOException {
        final ClientServiceProvider provider = ClientServiceProvider.loadService();
        // Credential provider is optional for client configuration.
        String accessKey = "yourAccessKey";
        String secretKey = "yourSecretKey";
        SessionCredentialsProvider sessionCredentialsProvider =
            new StaticSessionCredentialsProvider(accessKey, secretKey);
        String endpoints = "foobar.com:8080";
        ClientConfiguration clientConfiguration = ClientConfiguration.newBuilder()
            .setEndpoints(endpoints)
            .setCredentialProvider(sessionCredentialsProvider)
            .build();
        String consumerGroup = "yourConsumerGroup";
        Duration awaitDuration = Duration.ofSeconds(30);
        String tag = "yourMessageTagA";
        String topic = "yourTopic";
        FilterExpression filterExpression = new FilterExpression(tag, FilterExpressionType.TAG);
        SimpleConsumer consumer = provider.newSimpleConsumerBuilder()
            .setClientConfiguration(clientConfiguration)
            // Set the consumer group name.
            .setConsumerGroup(consumerGroup)
            // set await duration for long-polling.
            .setAwaitDuration(awaitDuration)
            // Set the subscription for the consumer.
            .setSubscriptionExpressions(Collections.singletonMap(topic, filterExpression))
            .build();
        // Max message num for each long polling.
        int maxMessageNum = 16;
        // Set message invisible duration after it is received.
        Duration invisibleDuration = Duration.ofSeconds(5);
        final List<MessageView> messages = consumer.receive(maxMessageNum, invisibleDuration);
        for (MessageView message : messages) {
            try {
                consumer.ack(message);
            } catch (Throwable t) {
                LOGGER.error("Failed to acknowledge message, messageId={}", message.getMessageId(), t);
            }
        }
        // Close the simple consumer when you don't need it anymore.
        consumer.close();
    }
}


今天通过对 RocketMQ 顺序消息的介绍,希望能够帮大家对顺序消息的原理和应用有更深入的了解,同时也期望 RocketMQ 的顺序消息能够帮助您更有效的解决业务问题。如果您对 RocktMQ 的业务消息感兴趣,也欢迎您扫描下方二维码加入钉钉群一起沟通交流~


7.png


点击此处,进入官网了解更多详情~

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
4月前
|
消息中间件 Java Apache
RocketMQ消息回溯实践与解析
在分布式系统和高并发应用的开发中,消息队列扮演着至关重要的角色,而RocketMQ作为阿里巴巴开源的一款高性能消息中间件,以其高吞吐量、高可用性和灵活的配置能力,在业界得到了广泛应用。本文将围绕RocketMQ的消息回溯功能进行实践与解析,分享工作学习中的技术干货。
95 4
|
2月前
|
消息中间件 存储 Java
RocketMQ文件刷盘机制深度解析与Java模拟实现
【11月更文挑战第22天】在现代分布式系统中,消息队列(Message Queue, MQ)作为一种重要的中间件,扮演着连接不同服务、实现异步通信和消息解耦的关键角色。Apache RocketMQ作为一款高性能的分布式消息中间件,广泛应用于实时数据流处理、日志流处理等场景。为了保证消息的可靠性,RocketMQ引入了一种称为“刷盘”的机制,将消息从内存写入到磁盘中,确保消息持久化。本文将从底层原理、业务场景、概念、功能点等方面深入解析RocketMQ的文件刷盘机制,并使用Java模拟实现类似的功能。
45 3
|
3月前
|
消息中间件 存储 监控
RocketMQ消息重试机制解析!
RocketMQ消息重试机制解析!
RocketMQ消息重试机制解析!
|
5月前
|
消息中间件 开发者
【RabbitMQ深度解析】Topic交换器与模式匹配:掌握消息路由的艺术!
【8月更文挑战第24天】在消息队列(MQ)体系中,交换器作为核心组件之一负责消息路由。特别是`topic`类型的交换器,它通过模式匹配实现消息的精准分发,适用于发布-订阅模式。不同于直接交换器和扇形交换器,`topic`交换器支持更复杂的路由策略,通过带有通配符(如 * 和 #)的模式字符串来定义队列与交换器间的绑定关系。
88 2
|
5月前
|
消息中间件 Java RocketMQ
微服务架构师的福音:深度解析Spring Cloud RocketMQ,打造高可靠消息驱动系统的不二之选!
【8月更文挑战第29天】Spring Cloud RocketMQ结合了Spring Cloud生态与RocketMQ消息中间件的优势,简化了RocketMQ在微服务中的集成,使开发者能更专注业务逻辑。通过配置依赖和连接信息,可轻松搭建消息生产和消费流程,支持消息过滤、转换及分布式事务等功能,确保微服务间解耦的同时,提升了系统的稳定性和效率。掌握其应用,有助于构建复杂分布式系统。
78 0
|
6月前
|
消息中间件 SQL RocketMQ
【RocketMQ系列五】消息示例-顺序消息&延迟消息&广播消息的实现
【RocketMQ系列五】消息示例-顺序消息&延迟消息&广播消息的实现
105 1
|
7月前
|
消息中间件 存储 运维
RocketMQ与Kafka深度对比:特性与适用场景解析
RocketMQ与Kafka深度对比:特性与适用场景解析
|
7月前
|
消息中间件 自然语言处理 负载均衡
RabbitMQ揭秘:轻量级消息队列的优缺点全解析
**RabbitMQ简介** RabbitMQ是源自电信行业的消息中间件,支持AMQP协议,提供轻量、快速且易于部署的解决方案。它拥有灵活的路由配置,广泛的语言支持,适用于异步处理、负载均衡、日志收集和微服务通信等场景。然而,当面临大量消息堆积或高吞吐量需求时,性能可能会下降,并且扩展和开发成本相对较高。
320 0
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
12天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

相关产品

  • 云消息队列 MQ