网络安全——数据链路层安全协议

本文涉及的产品
访问控制,不限时长
简介: 本章将会讲解数据链路层上的安全协议

一.数据链路层安全协议简介
通信的每一层中都有自己独特的安全问题,网络安全问题应该在多个协议层,针对不同的弱点解决。就安全而言,数据链路层(第二协议层)的通信连接是较为薄弱的环节。

本章中,我们将集中讨论与数据链路层相关的安全问题。

1.数据链路安全性
数据链路层安全性是指在数据链路各个结点之间能够安全地交换数据。它表现为以下两个方面。

(1)数据机密性。防止在数据交换过程中数据被非法窃听。
(2)数据完整性。防止在数据交换过程中数据被非法篡改。
数据交换过程中的数据机密性和完整性主要是通过密码技术实现的,即通信双方必须采用一致的加密算法对数据机密性和密钥交换算法等问题进行协商,并达成一致协议;在数据交换过程中,通信双方必须按所达成的协议进行数据加密和数据认证处理,以保证数据的机密性和完整性。

数据链路层安全协议增强了数据链路层协议的安全性,即在数据链路层的基础上增加了安全算法协商和数据加密/解密处理的功能和过程。

二.局域网数据链路层协议
数据链路层主要是为一个网段或一段介质上结点之间的通信提供数据传输服务。数据链路层提供了数据链路的差错处理与流量控制功能,将不可靠的数据链路转换成可靠的数据链路,同时完成数据帧的发送与接收,为网络层提供传送数据的功能和过程。

根据网络规模的不同,数据链路层的协议可分为两类:

1.本地链路局域网(LAN)

(LAN)中的数据链路层协议,主要通过局域网(L.AN)链路,将本地各个结点相互连接起来,实现数据通信。

2.广域网(WAN)
广域网(WAN)的数据链路层协议,主要通过广域网实现远程结点之间的数据通信。

不同物理链路的数据链路层协议是不同的:

本地链路的数据链路层协议一般采用IEEE802局域网协议标准

广域网链路的数据链路层协议主要采用点对点协议(PPP)

3.IEEE802局域网数据链路层协议
IEEE802规范定义了网卡如何访问传输介质(如光缆、双绞线、无线等),以及如何在传输介质上传输数据的方法,还定义了传输信息的网络设备之间连接建立、维护和拆除途径。

遵循IEEE802标准的产品包括网卡、桥接器、路由器以及其他一些用来建立局场网络的组件。

数据链路层包括逻辑链路控制(LLC)子层和介质访问控制(MAC)子层。

(1)数据链路层包括逻辑链路控制(LLC)
逻辑链路控制(Logical Link Control,LLC)是局域网中数据链路层的上层部分,IEEE 802.2中定义了逻辑链路控制协议。用户的数据链路服务通过LLC子层为网络层提供统一的接口。

(2)介质访问控制(MAC)子层
介质访问控制(medium access control)简称MAC。 是解决当局域网中共用信道的使用产生竞争时,如何分配信道的使用权问题。

MAC子层的主要功能是控制对传输介质的访问,MAC子层有如下两个基本职能。

(1)数据封装,包括传输之前的帧组合和接收中、接收后的帧解析/差错检测。
(2)介质访问控制,包括帧传输初始化和传输失败恢复。
(3)IEEE802.3 MAC数据格式
(1)前导码(Preamble)-7字节。字段中1和0交互使用,接收站通过该字段知道导入帧,并且该字段提供了同步化接收物理层帧接收部分和导人比特流的方法。
(2)帧起始定界符(Start-of-Frame Delimiter)-1字节。字段中1和0交互使用,结尾是两个连续的1,表示下一位是利用目的地址的重复使用字节的重复使用位。
(3)目的地址(Destination Address)-6字节。该字段用于识别需要接收帧的站。
(4)源地址(Source Addresses)-6字节。该字段用于识别发送帧的站。
(5)长度/类型(Length/Type)-2字节。如果是采用可选格式组成帧结构时,该字段既表示包含在帧数据字段中的MAC客户机数据大小,也表示帧类型ID。
(6)数据(Data)一是一组r(46n1500)字节的任意值序列。帧总值最小为64字节。
(7)帧校验序列(Frame Check Sequence)-4字节。该序列包括32位的循环冗余校验(CRC)值,由发送MAC方生成,通过接收MAC方进行计算,得出以校验被破坏的帧。
4.局域网数据链路层协议安全问题
通信的每一层中都有自己独特的问题。数据链路层(第二层)的通信连接是较为薄弱的环节,主要的安全问题如下。
(1)共享式以太网中的侦听问题
在共享式以太网中,通信是以广播方式进行的。在理论上,同一广播域内的所有主机都能够访问到在物理媒介上传送的数据包。

但在正常情况下,一台网络主机应该只接收与响应两种数据帧:与自己硬件地址相匹配的数据帧和发向所有主机的广播帧。

在一个实际的系统中,数据的收发由网卡来完成,每张以太网卡拥有一个全球唯一的以太网地址。它是一个48位的二进制数,在以太网卡中内建有一个数据包过滤器,作用是接收以本身网卡的MAC地址为通信目的的数据包和广播数据包,丢弃所有其他无关的数据包,以免除CPU对无关据包做无谓的处理,这是以太网卡在一般情况下的工作方式。

在这种工作方式下,以太网卡只将接收到的数据包与本机有关的部分向上传递。然面数据包过滤器是可以编程禁用的,禁用后,网卡将把接收到的所有数据包向上传递,上一层的软件因此可以监听以太网中其他计算机之间的通信,这种工作模式为混杂模式(Promiscuous Mode)。多数网卡支持混杂模式,使得采用普通网卡作为网络探针。
实现网络的侦听非常容易。这一方面方便了网络管理员,另一方面,普通用户很容易地侦听到网络通信,对用户的数据通信保密是一个很大的威胁。

(2)交换式以太网中的ARP广播问题
交换式以太网中监听的实施,除了要借助以太网卡的混杂工作模式外,还利用了ARP重定向技术。
ARP(地址解析协议)是TCP/IP协议栈的基础协议之一。ARP提供地址解析服务,用于将32位IP地址映射到以太网的48位硬件地址(MAC地址),以便将报文封装成以太帧发送。其间,ARP的主要功能体现在将上层的IP地址与下层的物理地址进行绑定。

ARP协议虽然是一个高效的数据链路层协议,但是作为一个局域网的协议,它是建立在各主机之间互相信任的基础上的,因此存在一定的安全隐患,内容如下。

(1)主机地址映射表是基于高速缓存动态更新的,这是ARP协议的特色,也是安全问题之一。由于正常的主机间MAC地址刷新都是有时限的,如果在下次更新之前成功地修改了被攻击主机上的地址缓存,就可以进行假冒。
(2)ARP请求以广播方式进行。这个问题是不可避免的,正是由于主机不知道通信对方的MAC地址,才需要进行ARP广播请求。这样攻击者就可以伪装ARP应答,与广播者真正要通信的机器进行竞争。还可以确定子网内的主机什么时候会刷新MAC地址缓存,以确定最大时间限度地进行假冒。
(3)可以随意发送ARP应答包。ARP协议是无状态的,任何主机,即使在没有请求的时候也可以做出应答,只要应答有效,接收到应答包的主机就可以无条件地根据应答包的内容刷新本机高速缓存。
(4)ARP应答无须认证。ARP协议是一个局域网协议,设计之初,出于传输效率的考虑,在数据链路层就没有做安全上的防范。在使用ARP协议交换MAC时无须认证,只要收到来自局域网内的ARP应答包,就将其中的MAC/IP对刷新到本机的高速缓存中。

相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
云安全基础课 - 访问控制概述
课程大纲 课程目标和内容介绍视频时长 访问控制概述视频时长 身份标识和认证技术视频时长 授权机制视频时长 访问控制的常见攻击视频时长
相关文章
|
2天前
|
存储 安全 网络安全
网络安全与信息安全:构建安全防线的多维策略在当今数字化时代,网络安全已成为维护个人隐私、企业机密和国家安全的关键要素。本文旨在探讨网络安全漏洞的本质、加密技术的重要性以及提升公众安全意识的必要性,以期为构建更加坚固的网络环境提供参考。
本文聚焦于网络安全领域的核心议题,包括网络安全漏洞的现状与应对、加密技术的发展与应用,以及安全意识的培养与实践。通过分析真实案例,揭示网络安全威胁的多样性与复杂性,强调综合防护策略的重要性。不同于传统摘要,本文将直接深入核心内容,以简洁明了的方式概述各章节要点,旨在迅速吸引读者兴趣,引导其进一步探索全文。
|
2天前
|
安全 网络安全 云计算
云计算与网络安全:构建安全的数字未来
在数字化浪潮中,云计算已成为推动企业创新与发展的重要引擎。然而,随着云服务的普及,网络安全问题也日益凸显,成为制约云计算进一步发展的瓶颈。本文旨在深入探讨云计算环境下的网络安全挑战,分析云服务中的安全隐患,并提出相应的信息安全对策。通过构建安全的云计算环境,为企业数字化转型保驾护航,共同迈向安全的数字未来。
|
2天前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
17 3
|
2天前
|
存储 安全 网络安全
云计算与网络安全:构建安全的数字天空##
随着数字化时代的到来,云计算已经成为企业和个人不可或缺的基础设施。然而,伴随其便利性而来的是一系列网络安全风险和挑战。本文将探讨云计算的基本概念、云服务的类型、网络安全的重要性及常见威胁,并讨论如何通过技术手段和管理策略来确保信息安全,以期为读者提供全面的理解和实用的建议。 ##
|
6天前
|
存储 安全 算法
守护网络空间的钥匙:网络安全与信息安全深度剖析
本文旨在深入探讨网络安全与信息安全领域的核心议题,包括网络安全漏洞、加密技术及安全意识等关键方面。通过分析这些领域的最新进展和技术细节,旨在为读者提供一个全面而深入的理解框架,帮助构建更加安全可靠的网络环境。
16 3
|
6天前
|
网络协议
UDP协议在网络通信中的独特应用与优势
UDP(用户数据报协议)作为关键的传输层协议,在网络通信中展现出独特优势。本文探讨UDP的无连接性及低开销特性,使其在实时性要求高的场景如视频流、在线游戏中表现优异;其不保证可靠交付的特性赋予应用程序自定义传输策略的灵活性;面向报文的高效处理能力及短小的包头设计进一步提升了数据传输效率。总之,UDP适用于高速、实时性强且对可靠性要求不高的应用场景,为网络通信提供了多样化的选择。
|
5天前
|
安全 物联网 网络安全
智能家居安全:保护您的智能设备免受网络威胁##
在现代科技迅速发展的时代,智能家居设备已经深入人们的生活。然而,随着便利性增加的同时,这些设备也面临着越来越多的网络安全威胁。本文将探讨如何保护您的智能家居设备免受黑客攻击,并介绍几种常见的安全措施和最佳实践。通过采取适当的预防措施,您可以确保家庭网络的安全性,保护个人隐私和数据不受侵害。 ##
|
1天前
|
存储 安全 物联网
探索未来网络:物联网安全的最佳实践与挑战
在数字化浪潮中,物联网作为连接万物的关键技术,已深刻改变我们的工作与生活方式。然而,随着其应用的广泛化,安全问题日益凸显,成为制约物联网发展的重要瓶颈。本文旨在深入探讨物联网的安全架构、风险点及应对策略,通过分析当前技术趋势和实际案例,提出一套切实可行的安全防护方案,以促进物联网技术的健康发展。
|
2天前
|
Python
HTTP协议不再是迷!Python网络请求实战,带你走进网络世界的奥秘
本文介绍了HTTP协议,它是互联网信息传递的核心。作为客户端与服务器通信的基础,HTTP请求包括请求行、头和体三部分。通过Python的`requests`库,我们可以轻松实现HTTP请求。本文将指导你安装`requests`库,并通过实战示例演示如何发送GET和POST请求。无论你是想获取网页内容还是提交表单数据,都能通过简单的代码实现。希望本文能帮助你在Python网络请求的道路上迈出坚实的一步。
9 0
|
6天前
|
云安全 安全 网络安全
探索云计算与网络安全的共生之道在数字化浪潮席卷全球的今天,云计算作为信息技术的一大革新,正重塑着企业的运营模式与服务交付。然而,随着云服务的普及,网络安全与信息安全的挑战也日益凸显,成为制约其发展的关键因素。本文旨在深入探讨云计算环境下的网络安全问题,分析云服务、网络安全及信息安全之间的相互关系,并提出相应的解决策略,以期为构建一个更安全、可靠的云计算生态系统提供参考。
本文聚焦于云计算环境中的网络安全议题,首先界定了云服务的基本概念及其广泛应用领域,随后剖析了当前网络安全面临的主要威胁,如数据泄露、身份盗用等,并强调了信息安全在维护网络空间秩序中的核心地位。通过对现有安全技术和策略的评估,包括加密技术、访问控制、安全审计等,文章指出了这些措施在应对复杂网络攻击时的局限性。最后,提出了一系列加强云计算安全的建议,如采用零信任架构、实施持续的安全监控与自动化响应机制、提升员工的安全意识教育以及制定严格的合规性标准等,旨在为云计算的安全可持续发展提供实践指南。
24 0