人工智能,丹青圣手,全平台(原生/Docker)构建Stable-Diffusion-Webui的AI绘画库教程(Python3.10/Pytorch1.13.0)

简介: 世间无限丹青手,遇上AI画不成。最近一段时间,可能所有人类画师都得发出一句“既生瑜,何生亮”的感叹,因为AI 绘画通用算法Stable Diffusion已然超神,无需美术基础,也不用经年累月的刻苦练习,只需要一台电脑,人人都可以是丹青圣手。

世间无限丹青手,遇上AI画不成。最近一段时间,可能所有人类画师都得发出一句“既生瑜,何生亮”的感叹,因为AI 绘画通用算法Stable Diffusion已然超神,无需美术基础,也不用经年累月的刻苦练习,只需要一台电脑,人人都可以是丹青圣手。

本次我们全平台构建基于Stable-Diffusion算法的Webui可视化图形界面服务,基于本地模型来进行AI绘画操作。

本地安装Stable-Diffusion-Webui

如果系统之前安装过Python3.10或者使用过Pytorch深度学习框架,那么推荐直接本地安装Stable-Diffusion-Webui,因为Stable-Diffusion的核心依赖库也是Pytorch。

首先拉取官方的项目:

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

随后进入项目的目录:

cd stable-diffusion-webui

官方文档建议直接在目录中运行shell脚本:

./webui.sh

但事实上,shell脚本很容易在过程中报错,该项目的核心代码其实是launch.py,所以理论上,我们只需要正常运行launch.py文件即可。

首先确保本机的Python版本号大于等于3.10.9

关于Python3.10的安装,请移玉步至:一网成擒全端涵盖,在不同架构(Intel x86/Apple m1 silicon)不同开发平台(Win10/Win11/Mac/Ubuntu)上安装配置Python3.10开发环境 ,这里不再赘述。

另外确保Pytorch的版本号大于等于13.1.0,关于Pytorch,请移步:闻其声而知雅意,M1 Mac基于PyTorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10)

随后安装相关的依赖库:

pip3 install -r requirements.txt  
pip3 install -r requirements_versions.txt

依赖文件中,有一个库可能会出问题,就是GFPGAN,它是腾讯开源的人脸识别模块,这里推荐使用GFPGAN官方网站(https://github.com/TencentARC/GFPGAN)的安装方式

# Install basicsr - https://github.com/xinntao/BasicSR  
# We use BasicSR for both training and inference  
pip install basicsr  
  
# Install facexlib - https://github.com/xinntao/facexlib  
# We use face detection and face restoration helper in the facexlib package  
pip install facexlib  
  
pip install -r requirements.txt  
python setup.py develop  
  
# If you want to enhance the background (non-face) regions with Real-ESRGAN,  
# you also need to install the realesrgan package  
pip install realesrgan

安装成功后,最好验证一下:

➜  ~ python3  
Python 3.10.9 (main, Dec 15 2022, 17:11:09) [Clang 14.0.0 (clang-1400.0.29.202)] on darwin  
Type "help", "copyright", "credits" or "license" for more information.  
>>> import gfpgan  
>>>

所有依赖安装成功后,就可以直接运行launch.py文件即可:

python3 launch.py

程序返回:

Python 3.10.9 (main, Dec 15 2022, 17:11:09) [Clang 14.0.0 (clang-1400.0.29.202)]  
Commit hash: 0cc0ee1bcb4c24a8c9715f66cede06601bfc00c8  
Installing requirements for Web UI  
Launching Web UI with arguments: --upcast-sampling --use-cpu interrogate  
Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled  
No module 'xformers'. Proceeding without it.  
==============================================================================  
You are running torch 1.13.0.  
The program is tested to work with torch 1.13.1.  
To reinstall the desired version, run with commandline flag --reinstall-torch.  
Beware that this will cause a lot of large files to be downloaded, as well as  
there are reports of issues with training tab on the latest version.  
  
Use --skip-version-check commandline argument to disable this check.  
==============================================================================  
Loading weights [6ce0161689] from /Users/liuyue/wodfan/work/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors  
Creating model from config: /Users/liuyue/wodfan/work/stable-diffusion-webui/configs/v1-inference.yaml  
LatentDiffusion: Running in eps-prediction mode  
DiffusionWrapper has 859.52 M params.  
Applying cross attention optimization (InvokeAI).  
Textual inversion embeddings loaded(0):   
Model loaded in 8.2s (create model: 0.6s, apply weights to model: 5.0s, apply half(): 1.9s, move model to device: 0.5s).  
Running on local URL:  http://127.0.0.1:7860

Stable-Diffusion-Webui服务会运行在系统的7860端口上。

需要注意的是,如果本地系统不支持cuda模式,需要修改运行命令:

python3 launch.py --skip-torch-cuda-test --upcast-sampling --use-cpu interrogate

这里使用CPU来进行模型训练。

另外如果是M系列的Mac,其实是支持MPS模式的,但Stable Diffusion目前的最新版并不支持MPS,所以需要单独设置环境变量,关闭MPS模式:

export PYTORCH_ENABLE_MPS_FALLBACK=1

最后访问http://127.0.0.1:7860即可,本地构建Stable-Diffusion-Webui服务就完成了。

Docker构建Stable-Diffusion-Webui

如果不想太折腾,也可以使用Docker容器来构建Stable-Diffusion-Webui,同样地,需要拉取线上的Docker配置文件项目:

git clone https://github.com/AbdBarho/stable-diffusion-webui-docker.git

随后进入项目的目录:

stable-diffusion-webui-docker

接着运行命令下载相关的依赖镜像:

docker compose --profile download up --build

下载完成后,运行命令构建容器:

docker compose --profile auto up --build

这里需要注意的是,模型数据和输出文件夹会以/data和/output的形式挂载到容器中,如果想在宿主机往容器内传入模型或者其他图片,需要写入项目中的data目录。

过程中,可能会报错:

Found no NVIDIA driver on your system

这是因为容器内找不到NVIDIA的显卡驱动。

这里需要单独再启动一个容器服务:

docker run -ti --runtime=nvidia -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all allennlp/allennlp

总的来说,安装过程简单,但是调试比较费劲,一旦启动出问题,就得进入容器内部修改代码,或者反复修改Dockerfile文件,所以Docker比较适合封装业务改动频繁的容器,而不是依赖环境繁多并且版本需要反复调整的场景。

Stable-Diffusion-Webui图像绘制

配置好Stable-Diffusion-Webui环境之后,访问http://127.0.0.1:7860:

在Prompt文本框中填入引导词:

Tall buildings, people bustling, heavy traffic, staggered light and shadow, the beauty of the city is conspicuous before.

随后点击右侧Generate生成按钮即可,这里引导词的意思是:高楼林立,人群熙熙攘攘,车水马龙,光影交错,城市之美尽显眼前。

注意引导词需要使用逗号分隔。

后端开始进行训练:

To create a public link, set `share=True` in `launch()`.  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:24<00:00,  1.25s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:19<00:00,  1.00it/s]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:34<00:00,  1.72s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.11s/it]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.10s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:20<00:00,  1.00s/it]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.10s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.13s/it]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.12s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:21<00:00,  1.07s/it]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:21<00:00,  1.09s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:19<00:00,  1.03it/s]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:20<00:00,  1.01s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:19<00:00,  1.03it/s]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:20<00:00,  1.01s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:19<00:00,  1.02it/s]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:22<00:00,  1.15s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:21<00:00,  1.07s/it]  
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:21<00:00,  1.06s/it]  
Total progress: 100%|██████████████████████████████████████████████████████████████████████████████| 20/20 [00:20<00:00,  1.00s/it]

片刻之间,挥毫落纸如云烟。

遗憾的是,引导词不支持中文,但可以配置权重,数值从0.1~100,默认状态是1,低于1就是减弱,大于1就是加强:



(Tall buildings:1.1), people bustling(1.61),(heavy traffic:0.3),(staggered light and shadow:1.3)

Stable-Diffusion-Webui也支持Negative prompt(反向引导词)。

就是用文字描述你不想在图像中出现的东西:

对图片进行去噪处理,使其看起来更像你的提示词;同样使其看起来更像你的反向提示词。

同时观察正方向两者之间的差异,并利用它来产生一组对噪声图片的改变,将最终结果移向前者而远离后者。

默认通用反向引导词:

lowres,bad anatomy,bad hands,text,error,missing fingers,  
extra digit,fewer digits,cropped,worst quality,  
low quality,normal quality,jpeg artifacts,signature,  
watermark,username,blurry,missing arms,long neck,  
Humpbacked,missing limb,too many fingers,  
mutated,poorly drawn,out of frame,bad hands,  
owres,unclear eyes,poorly drawn,cloned face,bad face

除了引导词,还可以调整采样迭代步数 (Sampling Steps)。

系统先随机生成一个基础的图片,然后一步步的调整图片,向引导词 Prompt 靠拢

Sampling Steps参数就是告诉人工智能,这样的步骤应该进行多少次。

次数越多,每一步训练也就越小越精确。当然了,成本也会越高,同时每一次训练的时间也会成同比增长。

除了迭代步数,也可以自由地选择采样方法(Sampling method)

也就是让Stable-Diffusion-Webui具体使用用什么算法来训练图片模型。

默认算法是Euler a :富有创造力,不同步数可以生产出不同的图片。 但是超过30步左右基本就没有实质化的增益效果。

Euler算法:最简单的算法,训练速度也是最快的。

LMS算法:Euler的延伸算法,相对更稳定一点,30步就比较稳定了

PLMS:优化过的LMS算法

其他的一些参数:

生成批次Batch count/n\_iter:同样的配置,循环跑几次

每批数量 Batch size:同时生成多少个图像,增加这个值可以并行运行,但也需要更多的显卡显存。

提示词相关性 CFG Scale:图像与引导词匹配程度。增加这个值将导致图像更接近引导词,但过高会让图像色彩过于饱和。一般在5~15之间为好,7,9,12是3个常见的设置值。

宽度 X 高度 Width X Height:单位是像素,适当增加尺寸,后台会试图填充更多的细节进来。

Stable-Diffusion-Webui定制化模型

Stable-Diffusion-Webui默认下载的基础模型在项目目录的models/Stable-diffusion文件夹中:

/stable-diffusion-webui/models/Stable-diffusion

模型名称是v1-5-pruned-emaonly.safetensors,体积是4.27GB。

如果需要一些比较有个性定制化模型,可以在civitai.com平台进行挑选和下载,需要注意的是,该平台上的模型鱼龙混杂,良莠不齐,不能说是蔚为大观,但多多少少有点泥沙俱下的意思,所以最好不要在比较正式的公共(工作)环境打开该平台,否则结果可能会令人非常尴尬。

这里我们选择相对比较潮流的赛博朋克风格模型:synthwavepunk

将下载的模型放入models/Stable-diffusion目录。

随后重启Stable-Diffusion-Webui服务:

python3 launch.py --skip-torch-cuda-test --upcast-sampling --use-cpu interrogate

在页面表单中的Stable Diffusion checkpoint选项里选择对应的模型:

引导词:

concept art, 4k, intricate, pinup, a woman, beautiful face, embroidery, lace, hyper-realistic, highly detailed, octane render, concept art, smooth, 8k, dancing princess, snthwve style, nvinkpunk, by jeremy mann, by sandra chevrier, by dave mckean and richard avedon and maciej kuciara

训练结果:

好了,现在,你已经知晓那些网络上的漂亮小姐姐是怎么生成的了。

结语

也许我们只是偶尔被网络上那些酷炫而猎奇的AI生成图所吸引,但如果你真的动手去搭建、调试、甚至开始训练属于自己的绘画模型,相信我,你马上就会深陷其中,不能自拔,AI仿若可以满足你所有的幻想,欲望满溢,又欲言又止,分寸把握之精确,妙入毫颠。什么?你还在玩那些无聊的电子游戏?相信我,Stable-Diffusion-Webui才是最高级的精神享受,没有之一,也不可替代。

相关文章
|
9天前
|
存储 人工智能 Serverless
AI 短剧遇上函数计算,一键搭建内容创意平台
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
|
28天前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
23天前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch团队为TorchAO引入1-8比特量化,提升ARM平台性能
PyTorch团队推出创新技术,在其低精度计算库TorchAO中引入低位运算符支持,实现1至8位精度的嵌入层权重量化及8位动态量化激活的线性运算符。该技术通过模块化设计和高效硬件利用,优化了资源受限环境下的深度学习计算,提升了计算效率并降低了资源消耗。新内核与PyTorch生态系统无缝集成,支持即时执行、编译优化及边缘计算,为开发者提供全方位性能优势。测试结果显示,多层次量化策略显著提升了计算效率,保持了模型精度。这一突破为深度学习框架优化开辟了多个研究方向,推动了人工智能在边缘计算等领域的广泛应用。
62 11
PyTorch团队为TorchAO引入1-8比特量化,提升ARM平台性能
|
18天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
143 21
|
2月前
|
人工智能 数据可视化 JavaScript
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
NodeTool 是一个开源的 AI 工作流可视化构建器,通过拖放节点的方式设计复杂的工作流,无需编码即可快速原型设计和测试。它支持本地 GPU 运行 AI 模型,并与 Hugging Face、OpenAI 等平台集成,提供模型访问能力。
125 14
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
|
25天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
62 10
|
14天前
|
SQL 人工智能 数据管理
跨云数据管理平台DMS:构建Data+AI的企业智能Data Mesh
跨云数据管理平台DMS助力企业构建智能Data Mesh,实现Data+AI的统一管理。DMS提供开放式元数据服务OneMeta、一站式智能开发平台和云原生AI数据平台,支持多模数据管理和高效的数据处理。结合PolarDB、AnalyticDB等核心引擎,DMS在多个垂直场景中展现出显著优势,如智能营销和向量搜索,提升业务效率和准确性。通过DataOps和MLOps的融合,DMS为企业提供了从数据到AI模型的全生命周期管理,推动数据驱动的业务创新。
|
16天前
|
机器学习/深度学习 人工智能 缓存
基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期
本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容: 1. 第五代英特尔至强处理器 2. LLM 推理加速框架 xFast Transformer 及其优化策略 3. 性能数据及 Demo 展示
|
27天前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
79 21
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
87 11