MindOpt优化求解器-月刊 (2023年2月)

简介: 简介: 记录MindOpt重要信息,如新功能、用户故事活动、行业技术突破等,每月会刊出一期。

2023.02.28

配图-20230228.jpg

(部分链接推荐在电脑端打开)

🌸新功能

MindOpt APL 建模语言即将升级,新语法更好记~

运行程序时请关注Notebook右上角的MAPL版本号,上线V2.0后部分旧语法会失效。

https://opt.aliyun.com/#/platform/overview

🌸案例

可提前阅读下面案例,了解语法变更:

① 广告流量分配(3种方式源代码)- MAPL新语法

https://opt.aliyun.com/#/platform/share/detail?path=13F14EF7-A8C5-4AB9-B09A-C112EAFDAA4E

② 广告流量分配(3种方式源代码)- MAPL旧语法

https://opt.aliyun.com/#/platform/share/detail?path=FCE71C3B-FDF8-4493-82CE-A6687D3C7209

🌸视频分享

运筹OR帷幄:达摩院MindOpt优化求解器最新进展,直播回放

https://www.bilibili.com/video/BV1QT411U7qQ

🌸活动通知

阿里-达摩院-决策智能实验室,近期招聘汇总

博士后、求解器研发、产品经理、校招、实习生等岗位,直投到mindopt.jobs@list.alibaba-inc.com

https://mp.weixin.qq.com/s/vnoa0ATn3yxkXm3TyAkrWQ

彩蛋活动🔥继续等您参与,拿新春【超大】礼包,得「有些才华在身上」积分

https://www.yuque.com/mindopt/forum/oe8qipcngwug5534

<<上期月刊




MindOpt官方钉钉群号:32451444

image.png

目录
相关文章
|
7月前
|
达摩院 Linux 决策智能
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
### MindOpt 优化求解器月刊(2024年3月) - 发布亮点:MAPL建模语言升级至V2.4,支持云上无安装使用和向量化建模语法。 - 新增功能:Linux用户可本地安装`maplpy`,并支持Python与MAPL混编。 - 实例分享:介绍背包问题的组合优化,展示如何在限定容量下最大化收益。 - 用户投稿:探讨机票超售时的最优调派策略,以最小化赔付成本。 - 加入互动:官方钉钉群32451444,更多资源及。 [查看详细内容](https://opt.aliyun.com/)
126 0
阿里达摩院MindOpt优化求解器-月刊(2024年3月)
|
7月前
|
供应链 Kubernetes 虚拟化
深入了解MindOpt优化求解器的License服务
在商业和研究领域,高效的数学优化求解器是解决复杂问题的关键工具。MindOpt求解器以其卓越的性能和广泛的应用场景成为众多专业人士的首选。但在享受其强大功能的同时,了解和选择合适的License服务是至关重要的。本篇博客将详细介绍MindOpt优化求解器的Licence服务。
|
7月前
|
机器学习/深度学习 达摩院
阿里达摩院MindOpt优化求解器-月刊(2024年4月)
【摘要】2024.04.30,阿里云发布了MindOpt优化求解器的新商品和功能。MindOpt现在已上架,提供超低价零售求解器,支持按需购买,可在阿里云平台上直接购买联网或不联网License。新版本V1.2发布,提升MILP性能,并增加PostScaling参数。此外,MindOpt Studio推出租户定制版,正处于邀测阶段。同时分享了使用MindOpt解决二分类SVM问题的案例。更多内容,可访问相关链接。
130 0
|
7月前
|
达摩院 IDE 开发工具
阿里达摩院MindOpt优化求解器-月刊(2024年5月)
阿里达摩院MindOpt优化求解器-月刊(2024年5月版),新增了两个案例,如何使用LLM和MindOpt更准确地回答数学问题、如何使用MindOpt优化云计算集群虚拟机资源配置提高机器利用率,和如何利用IIS冲突分析指导不可解的问题解决方案。MindOpt的求解器已经可以在阿里云线上购买不联网版本。租户版也正式上线,可体验更多功能。新增QQ交流群。
125 4
|
6月前
|
达摩院 Python
阿里达摩院MindOpt优化求解器-月刊(2024年6月)
**阿里达摩院MindOpt优化求解器2024年6月月刊概览:** - 发布新功能,MAPL建模语言V2.5上线,Python APIs全面升级,旧版本不兼容。 提供快速入门教程、示例代码展示如何用Python调用MAPL。MindOpt Studio租户版新增Gradio支持,便于开发WebAPP,提供了案例源码展示如何开发。引入新案例: 1. 巡检线路的排班-2017全国大学生数学建模竞赛D题。包含最短路模型、TSP模型、弧分割模型。2. 商品组合定价策略:探讨如何最赚钱的加购区商品定价。
135 0
|
7月前
|
达摩院 算法 Java
选择优化求解器的关键因素:以MindOpt为例
选择一款适合自己业务需求的求解器我们一般需要考量什么呢?可求解的问题类型?问题规模?本文将介绍一些需要考虑的重要因素,并且介绍阿里达摩院MindOpt优化求解器在这些因素下的表现。
|
7月前
|
达摩院 开发者 容器
「达摩院MindOpt」优化形状切割问题(MILP)
在制造业,高效地利用材料不仅是节约成本的重要环节,也是可持续发展的关键因素。无论是在金属加工、家具制造还是纺织品生产中,原材料的有效利用都直接影响了整体效率和环境影响。
「达摩院MindOpt」优化形状切割问题(MILP)
|
7月前
|
人工智能 自然语言处理 达摩院
MindOpt 云上建模求解平台:多求解器协同优化
数学规划是一种数学优化方法,主要是寻找变量的取值在特定的约束情况下,使我们的决策目标得到一个最大或者最小值的决策。
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
33 1
|
5月前
|
人工智能 算法 调度
优化问题之如何选择合适的优化求解器
优化问题之如何选择合适的优化求解器