盘点当下大热的 7 大 Github 机器学习『创新』项目

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 盘点当下大热的 7 大 Github 机器学习『创新』项目

本文将会分享近期发布的七大GitHub机器学习项目。这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP)、计算机视觉、大数据等。

 

最顶尖的Github机器学习项目

 

1. PyTorch-Transformers(NLP)

 

传送门: https://github.com/huggingface/pytorch-transformers

 

自然语言处理(NLP)的力量令人叹服。NLP改变了文本的处理方式,几乎到了无法用语言描述的程度。

 

在最先进的一系列NLP库中,PyTorch-Transformers出现最晚,却已打破各种NLP任务中已有的一切基准。它最吸引人的地方在于涵盖了PyTorch实现、预训练模型权重及其他重要元素,可以帮助用户快速入门。

 

运行最先进的模型需要庞大的计算能力。PyTorch-Transformers在很大程度上解决了这个问题,它能够帮助这类人群建立起最先进的NLP模型。

 

这里有几篇深度剖析PyTorch-Transformers的文章,可以帮助用户了解这一模型(及NLP中预训练模型的概念):

 

· PyTorch-Transformers:一款可处理最先进NLP的惊人模型库(使用Python)

https://www.analyticsvidhya.com/blog/2019/07/pytorch-transformers-nlp-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

· 8个入门NLP最优秀的预训练模型

https://www.analyticsvidhya.com/blog/2019/03/pretrained-models-get-started-nlp/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

· PyTorch——一个简单而强大的深度学习库

https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

2. NeuralClassifier (NLP)

 

传送门: https://github.com/Tencent/NeuralNLP-NeuralClassifier

 

在现实世界中,文本数据的多标签分类是一个巨大的挑战。早期面对NLP问题时,我们通常处理的是单一标签任务,但在真实生活中却远不是这么简单。

 

在多标签分类问题中,实例/记录具备多个标签,且每个实例的标签数量并不固定。

 

NeuralClassifier使我们能够在多层、多标签分类任务中快速实现神经模型。我最喜欢的是NeuralClassifier,提供了各种大众熟知的文本编码器,例如FastText、RCNN、Transformer等等。

e61bc8fe36b03256500f4e4b81cb68f.png

用NeuralClassifier可以执行以下分类任务:

 

· 双层文本分类

· 多层文本分类

· 多标签文本分类

· 多层(多标签)文本分类

 

以下两篇优秀的文章介绍了究竟什么是多标签分类,以及如何在Python中执行多标签分类:

 

· 使用NLP预测电影类型——多标签分类的精彩介绍

https://www.analyticsvidhya.com/blog/2019/04/predicting-movie-genres-nlp-multi-label-classification/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

· 使用Python构建你的第一个多标签图像分类模型

https://www.analyticsvidhya.com/blog/2019/04/build-first-multi-label-image-classification-model-python/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

3. TDEngine (大数据)

 

传送门: https://github.com/taosdata/TDengine

a72c9e854bf30744f1e4e17c9dbcb57.png

TDEngine数据库在几乎不到一个月的时间内就累积了近10,000个star。继续往下读,你立马就能明白这是为何。

 

TDEngine是一个开源大数据平台,针对:

 

· 物联网(IoT)

· 车联网

· 工业物联网

· IT基础架构等等

 

本质上,TDEngine提供了一整套与数据工程相关的任务,用户可以用极快的速度完成所有这些工作(查询处理速度将提高10倍,计算使用率将降低到1/5)。

 

目前有一点需要注意——TDEngine仅支持在Linux上执行。TDEngine数据库包含完整的文件资料以及包含代码的入门指南。

 

建议你阅读这一篇针对数据工程师的综合资源指南:

 

· 想成为数据工程师?这里列出了入门应看的综合资源

https://www.analyticsvidhya.com/blog/2018/11/data-engineer-comprehensive-list-resources-get-started/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

4. Video Object Removal (计算机视觉)

 

传送门: https://github.com/zllrunning/video-object-removal

 

你是否接触过图像数据?计算机视觉是一种十分先进的技术,用于操纵和处理图像的。想要成为计算机视觉专家,图像的目标检测通常被认为是必经之路。

 

那么视频呢?如果要对几个视频中的目标绘制边界框,虽然看似简单,实际难度却远不止如此,而且目标的动态性会使任务更加复杂。

 

所以Video Object Removal非常棒,只要在视频中某一目标周围绘制边界框,即可将它删除。就是这么简单!以下是一个范例:

f69dfa90e6f2e693341cd29774e8d022.gif

如果你在计算机视觉的世界里还是个小白,这里有两篇能帮助你入门并快速上手的文章:

 

· 对基础目标检测算法的全面介绍

https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

· 使用深度学习2.0掌握计算机视觉

https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

5. Python Autocomplete (编程)

 

传送门: https://github.com/vpj/python_autocomplete

 

你一定会爱上Python Autocomplete的。数据科学家的所有工作就是对各种算法进行试验(至少是大多数人),而Python Autocomplete可以利用一个LSTM简单模型自动写完Python代码。

 

下图中,灰色的部分就是LSTM模型自动填写的代码(结果位于图像底部):

d481da3614f8a9a71de2176fb6abc67.png

开发人员如是描述:

 

首先清除Python代码中的注释、字符串和空行,然后进行训练和预测。模型训练的前提是对python代码进行标记化,相比使用字节编码来预测字节,这似乎更为有效。

 

如果你曾花费(浪费)时间编写一行行单调的Python代码,那么这一模型可能正是你所寻找的。不过它的开发还处于非常早期的阶段,操作中不可避免会出现一些问题。

 

如果你想知道LSTM到底是什么,请阅读这篇文章中的介绍:

 

· 深度学习的要点:长短时记忆(LSTM)入门

https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

6. tfpyth–从TensorFlow到PyTorch再到TensorFlow (编程)

 

传送门: https://github.com/BlackHC/tfpyth

 

TensorFlow和PyTorch两大模型都坐拥庞大的用户群,但后者的使用率高得惊人,在未来一两年内很可能超过前者。不过请注意:这并不会打击Tensorflow,因为它的地位相当稳固。

 

所以如果你曾经在TensorFlow中写了一串代码,后来又在PyTorch中写了另一串代码,现在希望将两者结合起来用以训练模型——那么tfpyth框架会是一个好选择。Tfpyth最大的优势就在于用户不需要重写先前写好的代码。

31d6695b8e46946b961e43587fc3404.png

这一项目对tfpyth的使用方法给出了结构严谨的示例,这无疑是对TensorFlow与PyTorch争论的一种重新审视。

 

安装tfpyth易如反掌:

 

pip install tfpyth

 

以下是两篇深度介绍TensorFlow和PyTorch如何运作的文章:

 

· 深度学习指南:使用Python中的TensorFlow实现神经网络

https://www.analyticsvidhya.com/blog/2016/10/an-introduction-to-implementing-neural-networks-using-tensorflow/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

· PyTorch——一个简单而强大的深度学习库

https://www.analyticsvidhya.com/blog/2018/02/pytorch-tutorial/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

 

7. MedicalNet

e090abd7b1a0cea91f8df19fd12551d.png


MedicalNet中包含了一个PyTorch项目,该项目将《Med3D:用迁移学习分析3D医学图像》(https://arxiv.org/abs/1904.00625)这篇论文中的想法付诸实践。这一机器学习项目将医学数据集与不同的模态、目标器官和病理结合起来,以构建规模较大的数据集。

 

众所周知,深度学习模型(通常)需要大量训练数据,而TenCent发布的MedicalNet是一个相当出色的开源项目,希望大家都能尝试使用它。

 

MedicalNet的开发人员已经发布了四个预训练模型,这些模型基于23个数据集。如果你需要,下文对迁移学习进行了直观的介绍:

 

· 迁移学习及在深度学习中使用预训练模型的艺术

https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/?utm_source=blog&utm_medium=7-innovative-machine-learning-github-projects-in-python

目录
相关文章
|
14天前
|
开发工具 git
如何操作github,gitee,gitcode三个git平台建立镜像仓库机制,这样便于维护项目只需要维护一个平台仓库地址的即可-优雅草央千澈
如何操作github,gitee,gitcode三个git平台建立镜像仓库机制,这样便于维护项目只需要维护一个平台仓库地址的即可-优雅草央千澈
126 68
如何操作github,gitee,gitcode三个git平台建立镜像仓库机制,这样便于维护项目只需要维护一个平台仓库地址的即可-优雅草央千澈
|
3月前
|
编解码 Oracle Java
java9到java17的新特性学习--github新项目
本文宣布了一个名为"JavaLearnNote"的新GitHub项目,该项目旨在帮助Java开发者深入理解和掌握从Java 9到Java 17的每个版本的关键新特性,并通过实战演示、社区支持和持续更新来促进学习。
111 3
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
50 6
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
40 1
|
2月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
183 1
|
4月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
185 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
5月前
|
存储 安全 Java
【事故】记一次意外把公司项目放到GitHub并被fork,如何使用DMCA下架政策保障隐私
在一次意外中,作者因三年前将测试代码遗忘在GitHub上而遭遇了代码被他人fork的问题。为解决这一危机,作者详细介绍了如何通过GitHub的DMCA下架通知流程安全删除敏感代码,包括处理私人信息和商标侵权的具体步骤。本文不仅提供了实用的操作指南,还强调了及时响应的重要性,帮助读者避免类似风险
103 1
【事故】记一次意外把公司项目放到GitHub并被fork,如何使用DMCA下架政策保障隐私
|
5月前
|
SQL JavaScript 前端开发
Github 2024-08-05 开源项目周报 Top15
根据 Github Trendings 的统计,本周(2024年8月5日统计)共有15个项目上榜。以下是根据开发语言汇总的项目数量: - Go 项目:4个 - JavaScript 项目:3个 - Python 项目:3个 - Java 项目:2个 - TypeScript 项目:2个 - C 项目:1个 - Shell 项目:1个 - Dockerfile 项目:1个 - 非开发语言项目:1个
181 2
|
5月前
|
人工智能 Rust JavaScript
Github 2024-08-26 开源项目周报Top15
根据Github Trendings的统计,本周共有15个项目上榜。以下是按开发语言汇总的项目数量:Python项目8个,TypeScript、C++ 和 Rust 项目各2个,Jupyter Notebook、Shell、Swift 和 Dart 项目各1个。其中,RustDesk 是一款用 Rust 编写的开源远程桌面软件,可作为 TeamViewer 的替代品;Whisper 是一个通用的语音识别模型,基于大规模音频数据集训练而成;初学者的生成式人工智能(第2版)则是由微软提供的18门课程,教授构建生成式AI应用所需的知识。
171 1
|
5月前
|
Rust Dart 前端开发
Github 2024-08-19 开源项目周报Top15
根据Github Trendings的统计,本周(2024年8月19日统计)共有15个项目上榜。按开发语言分类,上榜项目数量如下:Python项目最多,有7项;其次是JavaScript和TypeScript,各有3项;Dart有2项;HTML、PowerShell、Clojure和C++各1项。此外,还介绍了多个热门项目,包括Bootstrap 5、RustDesk、ComfyUI、易采集、Penpot等,涵盖了Web开发、远程桌面、自动化测试、设计工具等多个领域。
136 1

热门文章

最新文章