【已解决】利用 Java 多线程并发编程提高数据处理效率

简介: 【已解决】利用 Java 多线程并发编程提高数据处理效率

🎉工作场景中遇到这样一个需求:根据主机的 IP 地址联动更新其他模型的相关信息。需求很简单,只涉及一般的数据库联动查询以及更新操作,然而在编码实现过程中发现,由于主机的数量很多,导致循环遍历查询、更新时花费很长的时间,调用一次接口大概需要 30-40 min 时间才能完成操作。

💡因此,为了有效缩短接口方法的执行时间,便考虑使用多线程并发编程方法,利用多核处理器并行执行的能力,通过异步处理数据的方式,便可以大大缩短执行时间,提高执行效率。


📍这里使用可重用固定线程数的线程池 FixedThreadPool,并使用 CountDownLatch 并发工具类提供的并发流程控制工具作为配合使用,保证多线程并发编程过程中的正常运行:


首先,通过 Runtime.getRuntime().availableProcessors() 方法获取运行机器的 CPU 线程数,用于后续设置固定线程池的线程数量。

其次,判断任务的特性,如果为计算密集型任务则设置线程数为 CPU 线程数+1,如果为 IO 密集型任务则设置线程数为 2 * CPU 线程数,由于在方法中需要与数据库进行频繁的交互,因此属于 IO 密集型任务。

之后,对数据进行分组切割,每个线程处理一个分组的数据,分组的组数与线程数保持一致,并且还要创建计数器对象 CountDownLatch,调用构造函数,初始化参数值为线程数个数,保证主线程等待所有子线程运行结束后,再进行后续的操作。

然后,调用 executorService.execute() 方法,重写 run 方法编写业务逻辑与数据处理代码,执行完当前线程后记得将计数器减1操作。

最后,当所有子线程执行完成后,关闭线程池。

✨在省略工作场景中的业务逻辑代码后,通用的处理方法示例如下所示:

public ResponseData updateHostDept() {
    // ...
    List<Map> hostMapList = mongoTemplate.find(query, Map.class, "host");
        // split the hostMapList for the following multi-threads task
        // return the number of logical CPUs
        int processorsNum = Runtime.getRuntime().availableProcessors();
        // set the threadNum as 2*(the number of logical CPUs) for handling IO Tasks,
        // if Computing Tasks set the threadNum as (the number of logical  CPUs) + 1
        int threadNum = processorsNum * 2;  
        // the number of each group data 
        int eachGroupNum = hostMapList.size() / threadNum; 
        List<List<Map>> groupList = new ArrayList<>();
        for (int i = 0; i < threadNum; i++) {
            int start = i * eachGroupNum;
            if (i == threadNum - 1) {
                int end = mapList.size();
                groupList.add(hostMapList.subList(start, end));
            } else {
                int end = (i+1) * eachGroupNum;
                groupList.add(hostMapList.subList(start, end));
            }
        }
        // update data by using multi-threads asynchronously
        ExecutorService executorService = Executors.newFixedThreadPool(threadNum/2);
        CountDownLatch countDownLatch = new CountDownLatch(threadNum);
        for (List<Map> group : groupList) {
            executorService.execute(()->{
                try {
                    for (Map map : group) {
                      // update the data in mongodb
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                  // let counter minus one 
                    countDownLatch.countDown();  
                }
            });
        }
        try {
          // main thread donnot execute until all child threads finish
            countDownLatch.await();  
        } catch (Exception e) {
            e.printStackTrace();
        }
        // remember to shutdown the threadPool
        executorService.shutdown();  
        return ResponseData.success();
}

🎉那么在使用多线程异步更新的策略后,从当初调用接口所需的大概时间为 30-40 min 下降到了 8-10 min,大大提高了执行效率。


💡需要注意的是,这里使用的 newFixedThreadPool 创建线程池,它有一个缺陷就是,它的阻塞队列默认是一个无界队列,默认值为 Integer.MAX_VALUE 极有可能会造成 OOM 问题。因此,一般可以使用 ThreadPoolExecutor 来创建线程池,自己可以指定等待队列中的线程个数,避免产生 OOM 问题。

public ResponseData updateHostDept() {
    // ...
    List<Map> hostMapList = mongoTemplate.find(query, Map.class, "host");
        // split the hostMapList for the following multi-threads task
        // return the number of logical CPUs
        int processorsNum = Runtime.getRuntime().availableProcessors();
        // set the threadNum as 2*(the number of logical CPUs) for handling IO Tasks,
        // if Computing Tasks set the threadNum as (the number of logical  CPUs) + 1
        int threadNum = processorsNum * 2;  
        // the number of each group data 
        int eachGroupNum = hostMapList.size() / threadNum; 
        List<List<Map>> groupList = new ArrayList<>();
        for (int i = 0; i < threadNum; i++) {
            int start = i * eachGroupNum;
            if (i == threadNum - 1) {
                int end = mapList.size();
                groupList.add(hostMapList.subList(start, end));
            } else {
                int end = (i+1) * eachGroupNum;
                groupList.add(hostMapList.subList(start, end));
            }
        }
        // update data by using multi-threads asynchronously
        ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 8, 30L, TimeUnit.SECONDS, 
                new ArrayBlockingQueue<>(100));
        CountDownLatch countDownLatch = new CountDownLatch(threadNum);
        for (List<Map> group : groupList) {
            executor.execute(()->{
                try {
                    for (Map map : group) {
                      // update the data in mongodb
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                  // let counter minus one 
                    countDownLatch.countDown();  
                }
            });
        }
        try {
          // main thread donnot execute until all child threads finish
            countDownLatch.await();  
        } catch (Exception e) {
            e.printStackTrace();
        }
        // remember to shutdown the threadPool
        executor.shutdown();  
        return ResponseData.success();
}

在上述的代码中,核心线程数和最大线程数分别为 5 和 8,并没有设置的很大的值,因为如果如果设置的很大,线程间频繁的上下文切换也会增加时间消耗,反而不能最大程度上发挥多线程的优势。至于如何选择合适的参数,需要根据机器的参数以及任务的类型综合考虑决定。


🎉最后补充一点,如果想要通过非编码的方式获取机器的 CPU 线程个数也很简单,windows 系统通过任务管理器,选择 “性能”,便可以查看 CPU 线程个数的情况,如下图所示:2e718f6de6d94987ae2f2182c528d9c8.png

🎉从上图可以看到,我的机器中内核是八个 CPU,但是通过超线程技术一个物理的 CPU 核心可以模拟成两个逻辑 CPU 线程,因此我的机器是支持8核16线程的。

相关文章
|
6天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
1天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
11 4
|
2天前
|
Java API Apache
Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
【10月更文挑战第29天】Java编程如何读取Word文档里的Excel表格,并在保存文本内容时保留表格的样式?
14 5
|
1天前
|
消息中间件 供应链 Java
掌握Java多线程编程的艺术
【10月更文挑战第29天】 在当今软件开发领域,多线程编程已成为提升应用性能和响应速度的关键手段之一。本文旨在深入探讨Java多线程编程的核心技术、常见问题以及最佳实践,通过实际案例分析,帮助读者理解并掌握如何在Java应用中高效地使用多线程。不同于常规的技术总结,本文将结合作者多年的实践经验,以故事化的方式讲述多线程编程的魅力与挑战,旨在为读者提供一种全新的学习视角。
15 3
|
1天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
12 2
|
2天前
|
安全 Java 调度
Java中的多线程编程入门
【10月更文挑战第29天】在Java的世界中,多线程就像是一场精心编排的交响乐。每个线程都是乐团中的一个乐手,他们各自演奏着自己的部分,却又和谐地共同完成整场演出。本文将带你走进Java多线程的世界,让你从零基础到能够编写基本的多线程程序。
10 1
|
6天前
|
缓存 Java 调度
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文旨在为读者提供一个关于Java多线程编程的全面指南。我们将从多线程的基本概念开始,逐步深入到Java中实现多线程的方法,包括继承Thread类、实现Runnable接口以及使用Executor框架。此外,我们还将探讨多线程编程中的常见问题和最佳实践,帮助读者在实际项目中更好地应用多线程技术。
12 3
|
8天前
|
Java 数据处理 开发者
Java多线程编程的艺术:从入门到精通####
【10月更文挑战第21天】 本文将深入探讨Java多线程编程的核心概念,通过生动实例和实用技巧,引导读者从基础认知迈向高效并发编程的殿堂。我们将一起揭开线程管理的神秘面纱,掌握同步机制的精髓,并学习如何在实际项目中灵活运用这些知识,以提升应用性能与响应速度。 ####
31 3
|
10天前
|
Java
Java中的多线程编程:从入门到精通
本文将带你深入了解Java中的多线程编程。我们将从基础概念开始,逐步深入探讨线程的创建、启动、同步和通信等关键知识点。通过阅读本文,你将能够掌握Java多线程编程的基本技能,为进一步学习和应用打下坚实的基础。
|
3月前
|
算法 Java 开发者
Java 编程入门:从零到一的旅程
本文将带领读者开启Java编程之旅,从最基础的语法入手,逐步深入到面向对象的核心概念。通过实例代码演示,我们将一起探索如何定义类和对象、实现继承与多态,并解决常见的编程挑战。无论你是编程新手还是希望巩固基础的开发者,这篇文章都将为你提供有价值的指导和灵感。