直播预告 | 柏睿数据 × PolarDB 湖仓一体联合解决方案

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 作为阿里云PolarDB开源社区的生态伙伴,柏睿数据和PolarDB联手,根据产品的特殊点整合统一的解决方案,新方案融合数据湖和数据仓库成为一种新型的开放式数据平台架构,PolarDB做湖,RapidsDB做仓,将数据湖和数据仓库的优势充分结合,通过RapidsDB的federation能力构建在数据湖低成本的数据存储架构之上,又继承了数据仓库的数据处理、分析和管理功能。本次分享将详细介绍湖和仓的边界区分,业内的通用数据同步实现方案以及RapidsDB的技术特性。

最近几年,随着企业数字化转型大步推进,对数据的综合使用方面,广度、深度、宽度都在不断延伸。为了满足多样化的数据需求,企业数据平台架构也在不断演进。单一数据湖和数据仓库已经不能满足数据分析的发展趋势,越来越多的企业开始尝试基于湖仓一体的混合架构打造自己的企业级数据平台。这种混合架构既有湖和又有仓的技术优势,可以在一定程度上支撑满足企业多样化的数据分析需求。

在此背景下,作为阿里云PolarDB开源社区的生态伙伴,柏睿数据和PolarDB联手,根据产品的特殊点整合统一的解决方案,新方案融合数据湖和数据仓库成为一种新型的开放式数据平台架构,PolarDB做湖,RapidsDB做仓,将数据湖和数据仓库的优势充分结合,通过RapidsDB的federation能力构建在数据湖低成本的数据存储架构之上,又继承了数据仓库的数据处理、分析和管理功能。本次分享将详细介绍湖和仓的边界区分,业内的通用数据同步实现方案以及RapidsDB的技术特性。

嘉宾介绍

杨基,柏睿数据咨询顾问,熟悉常见数据库、大数据、数据治理等问题,了解通信运营商、制造行业、金融行业相关的领域。

直播时间
2月17号(本周五)16:00~17:00

参与方式
钉钉扫描下图二维码
加入 PolarDB 开源交流群

杨基-开源学堂.png

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
1月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
23天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
178 7
|
23天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
37 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
78 1
|
20天前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
54 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
61 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
84 2
|
1月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
82 2
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB