数据结构和算法(二叉搜索树)

简介: 概述二叉搜索树是二叉树的一种特殊形式。 二叉搜索树具有以下性质:每个节点中的值必须大于(或等于)其左侧子树中的任何值,但小于(或等于)其右侧子树中的任何值。二叉搜索树(BST)是二叉树的一种特殊表示形式,它满足如下特性:每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。每个节点中的值必须小于(或等于)存储在其右子树中的任何值。在二叉搜索树中实现搜索操作 - 介绍二叉搜索树主要支持三个操作:搜索、插入和删除。 在本章中,我们将讨论如何在二叉搜索树中搜索特定的值。根据BST的特性,对于每个节点:如果目标值等于节点的值,则返回节点;如果目标值小于节点的值,则继续在左子树

概述

二叉搜索树是二叉树的一种特殊形式。 二叉搜索树具有以下性质:每个节点中的值必须大于(或等于)其左侧子树中的任何值,但小于(或等于)其右侧子树中的任何值。

二叉搜索树(BST)是二叉树的一种特殊表示形式,它满足如下特性:

每个节点中的值必须大于(或等于)存储在其左侧子树中的任何值。

每个节点中的值必须小于(或等于)存储在其右子树中的任何值。

在二叉搜索树中实现搜索操作 - 介绍

二叉搜索树主要支持三个操作:搜索、插入和删除。 在本章中,我们将讨论如何在二叉搜索树中搜索特定的值。

根据BST的特性,对于每个节点:

如果目标值等于节点的值,则返回节点;

如果目标值小于节点的值,则继续在左子树中搜索;

如果目标值大于节点的值,则继续在右子树中搜索。

在二叉搜索树中实现插入操作 - 介绍

二叉搜索树中的另一个常见操作是插入一个新节点。有许多不同的方法去插入新节点,这篇文章中,我们只讨论一种使整体操作变化最小的经典方法。 它的主要思想是为目标节点找出合适的叶节点位置,然后将该节点作为叶节点插入。 因此,搜索将成为插入的起始。

与搜索操作类似,对于每个节点,我们将:

  • 根据节点值与目标节点值的关系,搜索左子树或右子树;
  • 重复步骤 1 直到到达外部节点;
  • 根据节点的值与目标节点的值的关系,将新节点添加为其左侧或右侧的子节点。

举例:(来源力扣)

二叉搜索树中的插入操作

给定二叉搜索树(BST)的根节点 root 和要插入树中的值 value ,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据 保证 ,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回 任意有效的结果 。

输入:root = [40,20,60,10,30,50,70], val = 25

输出:[40,20,60,10,30,50,70,null,null,25]

插入一个数,需要考虑的是判断跟根节点的大小来判断插入哪一个子树,如果下面没有子树,则直接进行插入就可以了,如果有子树,就需要继续比较大小,知道到达叶子节点.

class Solution {

   public TreeNode insertIntoBST(TreeNode root, int val) {

       if(root==null){

           return new TreeNode(val);

       }

       if(root.val>val){

           root.left=insertIntoBST(root.left,val);

       }else{

           root.right=insertIntoBST(root.right,val);

       }

       return root;

   }

}

class Solution {

   public TreeNode insertIntoBST(TreeNode root, int val) {

       if (root == null) {

           return new TreeNode(val);

       }

       TreeNode pos = root;

       while (pos != null) {

           if (val < pos.val) {

               if (pos.left == null) {

                   pos.left = new TreeNode(val);

                   break;

               } else {

                   pos = pos.left;

               }

           } else {

               if (pos.right == null) {

                   pos.right = new TreeNode(val);

                   break;

               } else {

                   pos = pos.right;

               }

           }

       }

       return root;

   }

}



在二叉搜索树中实现删除操作 - 介绍

删除要比我们前面提到过的两种操作复杂许多。有许多不同的删除节点的方法,这篇文章中,我们只讨论一种使整体操作变化最小的方法。我们的方案是用一个合适的子节点来替换要删除的目标节点。根据其子节点的个数,我们需考虑以下三种情况:

  • 1. 如果目标节点没有子节点,我们可以直接移除该目标节点。
  • 2. 如果目标节只有一个子节点,我们可以用其子节点作为替换。
  • 3. 如果目标节点有两个子节点,我们需要用其中序后继节点或者前驱节点来替换,再删除该目标节点。

举例:(来源力扣)

删除二叉搜索树中的节点

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点;

如果找到了,删除它。

输入:root = [5,3,6,2,4,null,7], key = 3

输出:[5,4,6,2,null,null,7]

解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。

一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。

另一个正确答案是 [5,2,6,null,4,null,7]。

class Solution {

   public TreeNode deleteNode(TreeNode root, int key) {

       if (root == null) {

           return null;

       }

       if (key < root.val) {

           // 待删除节点在左子树中

           root.left = deleteNode(root.left, key);

           return root;

       } else if (key > root.val) {

           // 待删除节点在右子树中

           root.right = deleteNode(root.right, key);

           return root;

       } else {

           // key == root.val,root 为待删除节点

           if (root.left == null) {

               // 返回右子树作为新的根

               return root.right;

           } else if (root.right == null) {

               // 返回左子树作为新的根

               return root.left;

           } else {

               // 左右子树都存在,返回后继节点(右子树最左叶子)作为新的根

               TreeNode successor = min(root.right);

               successor.right = deleteMin(root.right);

               successor.left = root.left;

               return successor;

           }

       }

   }


   private TreeNode min(TreeNode node) {

       if (node.left == null) {

           return node;

       }

       return min(node.left);

   }


   private TreeNode deleteMin(TreeNode node) {

       if (node.left == null) {

           return node.right;

       }

       node.left = deleteMin(node.left);

       return node;

   }

}

class Solution {

   public TreeNode deleteNode(TreeNode root, int key) {

       if (root == null) {

           return null;

       }

       if (root.val > key) {

           root.left = deleteNode(root.left, key);

           return root;

       }

       if (root.val < key) {

           root.right = deleteNode(root.right, key);

           return root;

       }

       if (root.val == key) {

           if (root.left == null && root.right == null) {

               return null;

           }

           if (root.right == null) {

               return root.left;

           }

           if (root.left == null) {

               return root.right;

           }

           TreeNode successor = root.right;

           while (successor.left != null) {

               successor = successor.left;

           }

           root.right = deleteNode(root.right, successor.val);

           successor.right = root.right;

           successor.left = root.left;

           return successor;

       }

       return root;

   }

}



相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
68 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
161 4
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
112 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
12天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
36 2
|
28天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
57 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
131 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
75 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
81 1

热门文章

最新文章