基础数据结构(二):队列结构 Queue(TS版)

简介: 基础数据结构(二):队列结构 Queue(TS版)

原文来自我的个人博客

1. 认识队列结构

  1. 队列是一个 先进先出(FIFO) 的数据结构
  2. js 中没有队列,但我们可以用 数组或链表 实现队列的所有功能
  3. 队列的常用操作:

    1. enqueue(element):向队列尾部添加一个(多个)新的项
    2. dequeue():移除队列的第一项,并返回被移除的元素
    3. front/peek():返回队列中的第一个元素
    4. isEmpty():判断队列是否为空
    5. size():返回队列的元素个数

队列的结构示意图:

image.png

2. 实现队列结构封装

队列的实现和栈一样也有两种实现方式:

  1. 基于 数组 实现
  2. 基于 链表 实现

    链表也是一种数据结构, js 中没有自带链表结构,后续会写关于链表的文章,本章先使用数组来实现。

实现:

// 封装一个队列
export default class ArrayQueue<T = any> {
  private data: T[] = [];
  
  constructor(data: T[]) {
    this.data = data || [];
  }

  enqueue(element: T): void {
    this.data.push(element);
  }

  dequeue(): T | undefined {
    return this.data.shift();
  }

  peek(): T | undefined {
    return this.data[0];
  }

  isEmpty(): boolean {
    return this.data.length === 0;
  }

  size(): number {
    return this.data.length;
  }
}

测试:

const queue = new ArrayQueue<number>();

queue.push(1);
queue.push(2);
queue.pop();
queue.push(3);
console.log(queue); // ArrayQueue { data: [ 2, 3 ] }

3. 实战一:最近的请求次数

这是 Leetcode 上的第 933 道题,难度为 简单

3.1 题目描述

写一个 RecentCounter 类来计算特定时间范围内最近的请求。

请你实现 RecentCounter 类:

  • RecentCounter() 初始化计数器,请求数为 0 。
  • int ping(int t) 在时间 t 添加一个新请求,其中 t 表示以毫秒为单位的某个时间,并返回过去 3000 毫秒内发生的所有请求数(包括新请求)。确切地说,返回在 [t-3000, t] 内发生的请求数。

保证 每次对 ping 的调用都使用比之前更大的 t 值。

示例 1:

输入:
["RecentCounter", "ping", "ping", "ping", "ping"]
[[], [1], [100], [3001], [3002]]
输出:
[null, 1, 2, 3, 3]

解释:
RecentCounter recentCounter = new RecentCounter();
recentCounter.ping(1);     // requests = [1],范围是 [-2999,1],返回 1
recentCounter.ping(100);   // requests = [1, 100],范围是 [-2900,100],返回 2
recentCounter.ping(3001);  // requests = [1, 100, 3001],范围是 [1,3001],返回 3
recentCounter.ping(3002);  // requests = [1, 100, 3001, 3002],范围是 [2,3002],返回 3

提示:

  • 1 <= t <= 109
  • 保证每次对 ping 调用所使用的 t 值都 严格递增
  • 至多调用 ping 方法 104 次

3.2 解一:队列

思路:

我们可以用一个队列维护发生请求的时间,当在时间 t 收到请求时,将时间 t 入队。
保证队列的 尾部值 减去队列的 首部值 小于等于 3000,队列中的元素数量即为 最近的请求次数

代码:

class RecentCounter {
  queue: ArrayQueue<number>;

  constructor() {
    this.queue = new ArrayQueue<number>();
  }

  ping(t: number): number {
    this.queue.enqueue(t);
    while (this.queue.peek() < t - 3000) {
      this.queue.dequeue();
    }
    return this.queue.size();
  }
}

/**
 * Your RecentCounter object will be instantiated and called as such:
 * var obj = new RecentCounter()
 * var param_1 = obj.ping(t)
 */

复杂度分析:

  • 时间复杂度:均摊 O(1),每个元素至多入队出队各一次。
  • 空间复杂度:O(L),其中 L 为队列的最大元素个数。

4. 实战二:无法吃午餐的学生数量

这是 Leetcode 上的第 1700 道题,难度为 简单

4.1 题目描述

学校的自助午餐提供圆形和方形的三明治,分别用数字 0 和 1 表示。所有学生站在一个队列里,每个学生要么喜欢圆形的要么喜欢方形的。
餐厅里三明治的数量与学生的数量相同。所有三明治都放在一个  里,每一轮:

  • 如果队列最前面的学生 喜欢 栈顶的三明治,那么会 拿走它 并离开队列。
  • 否则,这名学生会 放弃这个三明治 并回到队列的尾部。

这个过程会一直持续到队列里所有学生都不喜欢栈顶的三明治为止。

给你两个整数数组 students 和 sandwiches ,其中 sandwiches[i] 是栈里面第 i​​​​​​ 个三明治的类型(i = 0 是栈的顶部), students[j] 是初始队列里第 j​​​​​​ 名学生对三明治的喜好(j = 0 是队列的最开始位置)。请你返回无法吃午餐的学生数量。

示例 1:

输入: students = [1,1,0,0], sandwiches = [0,1,0,1]
输出: 0 解释:
- 最前面的学生放弃最顶上的三明治,并回到队列的末尾,学生队列变为 students = [1,0,0,1]。
- 最前面的学生放弃最顶上的三明治,并回到队列的末尾,学生队列变为 students = [0,0,1,1]。
- 最前面的学生拿走最顶上的三明治,剩余学生队列为 students = [0,1,1],三明治栈为 sandwiches = [1,0,1]。
- 最前面的学生放弃最顶上的三明治,并回到队列的末尾,学生队列变为 students = [1,1,0]。
- 最前面的学生拿走最顶上的三明治,剩余学生队列为 students = [1,0],三明治栈为 sandwiches = [0,1]。
- 最前面的学生放弃最顶上的三明治,并回到队列的末尾,学生队列变为 students = [0,1]。
- 最前面的学生拿走最顶上的三明治,剩余学生队列为 students = [1],三明治栈为 sandwiches = [1]。
- 最前面的学生拿走最顶上的三明治,剩余学生队列为 students = [],三明治栈为 sandwiches = []。
所以所有学生都有三明治吃。

示例 2:

输入: students = [1,1,1,0,0,1], sandwiches = [1,0,0,0,1,1]
输出: 3

提示:

  • 1 <= students.length, sandwiches.length <= 100
  • students.length == sandwiches.length
  • sandwiches[i] 要么是 0 ,要么是 1 。
  • students[i] 要么是 0 ,要么是 1 。

4.2 解一:队列

思路:
我们可以维护两个队列,一个是学生队列,一个是三明治队列。

循环比较 学生队列三明治队列头部第一个元素,如果相同则都 移除 它们,如果不相同则将学生队列的头部元素移到尾部,直到碰到下一组相同的两个头部元素 或者 学生队列所有学生都不喜欢三明治队列的第一个三明治。

代码:

function countStudents(students: number[], sandwiches: number[]): number {
  const studentsQueue = new ArrayQueue<number>(students);
  const sandwichesQueue = new ArrayQueue<number>(sandwiches);

  let count = 0;
  while (studentsQueue.size()) {
    if (studentsQueue.peek() === sandwichesQueue.peek()) {
      studentsQueue.dequeue();
      sandwichesQueue.dequeue();
      count = 0;
    } else {
      studentsQueue.enqueue(studentsQueue.dequeue()!);
      count++;
    }

    if (count === studentsQueue.size()) return sandwichesQueue.size();
  }

  return 0;
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是学生的数量。
  • 空间复杂度:O(1)

5. 实战三:字符串中的第一个唯一字符

这是 Leetcode 上的第 387 道题,难度为 简单

5.1 题目描述

给定一个字符串 s ,找到 它的第一个不重复的字符,并返回它的索引 。如果不存在,则返回 -1 。

示例 1:

输入: s = "leetcode"
输出: 0

示例 2:

输入: s = "loveleetcode"
输出: 2

示例 3:

输入: s = "aabb"
输出: -1

提示:

  • 1 <= s.length <= 105
  • s 只包含小写字母

5.2 解一:哈希表

思路:

维护一个 map,分两次遍历字符串

  1. 第一次遍历存储每个字符对应的出现次数
  2. 第二次遍历取出第一个只出现第一次的字符

代码:

function firstUniqChar(s: string): number {
  const map = new Map<string, number>();
  for (let i = 0; i < s.length; i++) {
    let n = map.get(s[i]);
    n ? map.set(s[i], n + 1) : map.set(s[i], 1);
  }

  for (let i = 0; i < s.length; i++) {
    if (map.get(s[i]) === 1) return i;
  }
  return -1;
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(∣Σ∣),其中 Σ 是字符集,在本题中 s 只包含小写字母,因此 ∣Σ∣≤26 。我们需要 O(∣Σ∣) 的空间存储哈希映射。

5.3 解二:队列

思路:

维护一个队列,按照顺序存储每一个字符以及它们第一次出现的位置。当我们对字符串进行遍历时,设当前遍历到的字符为 c,如果 c 不在哈希映射中,我们就将 c 与它的索引作为一个二元组放入队尾,否则我们就需要检查队列中的元素是否都满足「只出现一次 的要求,即我们不断地根据哈希映射中存储的值(是否为 −1)选择弹出队首的元素,直到队首元素 「真的」 只出现了一次或者队列为空。

在遍历完成后,如果队列为空,说明没有不重复的字符,返回 −1,否则队首的元素即为第一个不重复的字符以及其索引的二元组

代码:

function firstUniqChar(s: string): number {
  const map = new Map<string, number>();
  const queue = new ArrayQueue<[string, number]>();
  for (let i = 0; i < s.length; i++) {
    if(!map.has(s[i])) {
      map.set(s[i], i)
      queue.enqueue([s[i], i]);
    } else {
      map.set(s[i], -1)
      while(queue.size() && map.get((queue.peek() as [string,number])[0]) === -1) {
        queue.dequeue()
      }
    }
  }

  return queue.size() ? (queue.peek() as [string, number])[1] : -1;
}

复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(∣Σ∣)
相关文章
|
3天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
45 9
|
2天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
32 16
|
5天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
24天前
初步认识栈和队列
初步认识栈和队列
53 10
|
20天前
【数据结构】-- 栈和队列
【数据结构】-- 栈和队列
13 0
|
24天前
探索数据结构:队列的的实现与应用
探索数据结构:队列的的实现与应用
|
24天前
探索顺序结构:栈的实现方式
探索顺序结构:栈的实现方式
|
24天前
|
存储 C语言
栈和队列题目练习
栈和队列题目练习
14 0
|
1天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
20 4
|
25天前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
25 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器