【有营养的算法笔记】基础算法 —— 高精度算法(加减乘除)2

简介: 【有营养的算法笔记】基础算法 —— 高精度算法(加减乘除)

四、高精度乘法


1、思路及模板

我们这里讲的高精度乘法为大整数 × \times × 小整数,大整数长度不超过 1 0 6 10^{6} 106,小整数数据范围不超过 1 0 9 10^{9} 109。


高精度乘法,就不只是单单的数学计算了,这里有些不同。


首先大数 a a a 倒序存储到 vector 中,这样也是为了方便进位,首先设定进位 t t t 。


再看一个例子,了解一下进位规则:



182f8bbd5ae09b6a277b01cecc8d1caf.png


就比如这个例子,大数 a a a 的单独位数直接和 b b b 相乘,将结果累加到 t t t 中,将乘得的结果 % 10 \% 10 %10 存放到 c c c 数组中,然后 t / = 10 t /= 10 t/=10 ,将进位去掉一位 。其实这里的进位也很好理解,无非就是要让 t t t 到下一位,而下一位是当前位次 × 10 \times 10 ×10 ,所以 t t t 要前进一位就要 / 10 / 10 /10 。


这就是高精度乘法的运算规则,也不需要分类讨论啥的,就记住这个规律就好。虽然运算方法和我们从前计算方式有些不同,但是最终计算结果是相同的。


由于这个过程不太好画,所以不懂的小伙伴们可以下去自己模拟一下,操作很简单,但是用电脑画图不好表示。


模板 :


vector<int> Mul(vector<int> &A, int b) 
{
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i++) {
        t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }
    while (t) {
        C.push_back(t % 10);
        t /= 10;
    }
    // 去除前导 0 
    while (C.size() > 1 && C.back() == 0) {
        C.pop_back();
    }
    return C;
}


我们再来讲讲模板里面的部分内容:


第一部分:

while (t) {
    C.push_back(t % 10);
    t /= 10;
}



这一部分就是在处理进位,因为运算结束之后,很可能还有进位没有处理。所以循环结束需要额外处理一下。


第二部分

// 去除前导 0 
while (C.size() > 1 && C.back() == 0) {
    C.pop_back();
}


乘法也是会出现前导 0 0 0 的,比如任何一个数和 0 0 0 相乘结果都会是 0 0 0,所以这里也需要去一下前导 0 0 0 。



2、代码实现


链接793. 高精度乘法


描述:

给定两个非负整数(不含前导 0 0 0 ) A A A 和 B B B ,请你计算 A × B A×B A×B 的值。


输入格式:

共两行,第一行包含整数 A A A ,第二行包含整数 B B B 。


输出格式:

共一行,包含 A × B A×B A×B 的值。


数据范围:

1 ≤ A 的长度 ≤ 100000 1≤A的长度≤100000 1≤A的长度≤100000

0 ≤ B ≤ 10000 0≤B≤10000 0≤B≤10000


输入样例

2
3


输出样例

6


由于上面我们基本上已经把代码讲过了,所以直接上代码,高精度乘法其实思路十分简单:


82e9ada4c14b13c7dfb2214098bfd092.png






五、高精度除法


1、思路及模板


我们这里讲的高精度除法为大整数 / / / 小整数,大整数长度不超过 1 0 6 10^{6} 106,小整数数据范围不超过 1 0 9 10^{9} 109。



我们人在做除法时,会先看第一位,如果第一位大于除数,则在结果相应位置写下除以除数之后的数据,否则看下一位,这样以此类推。所以人算除法第一位都是有效数据位。


但是对于计算机不是这样,计算机则会默认从第一位算起,举个例子,比如 1234 / 11 1234 / 11 1234/11 :如果以人的角度,第一位肯定为 1 1 1 ,但是计算机会从第一位开始看,第一位为 0 0 0 。


而 除法可能产生余数 ,所以还需要一个变量来记录余数。


有了这个概念,我们先看模板:


我们的模板是倒着存数据的,但是高精度除法是可以正着存的,因为除法需要从第一位开始除,所以正着存完全没有问题,但是之后可能会有高精度的混合运算,所以我们这边保持一致,也是倒着存。



vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i--) {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) {
        C.pop_back();
    }
    return C;
}


看完模板之后,我们对里面的一些代码进行讲解


第一块

for (int i = A.size() - 1; i >= 0; i--) {
    r = r * 10 + A[i];
    C.push_back(r / b);
    r %= b;
}


首先看这一步,高精度除法比另外三个算法难的原因就是出在这一步上,因为运算规则可能不太好理解。


我们知道,如果要做除法运算,那么就需要一定的 补位 ,r * 10 + A[i] 就是在补位,因为下一次的需要被除的数据,就是第一次相除后的余数 × 10 \times 10 ×10 ,然后加上当前元素 A[i] 。


而除之后的结果就是 r / b r / b r/b ,每次除完都有相应的余数,所以 r %= b 。下面我们就用一张图演示一下:


7bd54127f0304a6bb43c2fd3c598b089.png


通过这张图,我们就可以完美的解释代码究竟在干什么,实际上这就是一个计算的过程,过程涉及补位,相除,得余数等操作…


而最后,在进行完所有的操作之后 r r r 其实就是最终的余数。



第二块

reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) {
    C.pop_back();
}


这两步就是在去前导 0 0 0 ,上面的图中我们也可以发现,高精度除法也是有前导 0 0 0 的,但是对于顺序表来说,前导 0 0 0不太好去,所以就逆置一下再去前导 0 0 0 。


最后倒着输出 c c c 即可。



2、代码实现


链接794. 高精度除法


描述:


给定两个非负整数(不含前导 0 0 0 ) A , B A,B A,B 请你计算 A / B A/B A/B 的商和余数。

输入格式:

共两行,第一行包含整数 A A A ,第二行包含整数 B B B 。


输出格式:

共两行,第一行输出所求的商,第二行输出所求余数。


数据范围:

1 ≤ A 的长度 ≤ 100000 1≤A的长度≤100000 1≤A的长度≤100000

1 ≤ B ≤ 10000 1≤B≤10000 1≤B≤10000

B B B 一定不为 0 0 0


输入样例

7
2



输出样例

3
1


思路我们说过了,接下来我把 倒着存正着存 的两个版本都贴上来。

倒着存

4a893f7ed2bb4d6da69cb982cbac3aa4.jpeg



正着存

e6e4e471e68f280f8a94b4f2c9217934.png



六、结语



到这里,本篇文章就到此结束了,实际上高精度算法这一块还是很容易理解的,因为我们可以模拟它们计算的过程,所以对于一些细节不太了解的小伙伴们可以下去模拟一下。

一般来说,只要背过模板做这类问题就信手拈来了。所以不必担心嘿嘿。


当然,小伙伴们最好也找两道高精度问题练练手。我们不仅要看懂,还要会写。

如果觉得 a n d u i n anduin anduin 写的还不错的话,可以点赞 + 评论 + 收藏支持一下,我们下期见~





相关文章
|
2月前
|
机器学习/深度学习 人工智能 文字识别
一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)
【7月更文挑战第2天】 💡💡💡创新点: 1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显; 2)引入Wasserstein Distance Loss提升小目标检测能力; 3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替;
267 4
|
3月前
|
存储 算法 Java
技术笔记:JVM的垃圾回收机制总结(垃圾收集、回收算法、垃圾回收器)
技术笔记:JVM的垃圾回收机制总结(垃圾收集、回收算法、垃圾回收器)
39 1
|
2月前
|
存储 算法 C语言
软考中级之数据库系统工程师笔记总结(二)数据结构与算法
软考中级之数据库系统工程师笔记总结(二)数据结构与算法
23 0
|
2月前
|
存储 算法 程序员
|
3月前
|
机器学习/深度学习 算法 数据可视化
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
34 0
|
15天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
15天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
16天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
17天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。