AI Earth首套气象数据集(ERA5-Land )开放使用

简介: 基于达摩院在深度学习、计算机视觉、地理空间分析等方向上的技术积累,结合阿里云强大算力支撑,提供多源遥感对地观测数据的云计算分析服务,用数据感知地球世界,让AI助力科学研究。

气象数据集(ERA5-Land)

ERA5-Land是气候再分析数据集,与ERA5相比,提供了更高分辨率的陆地气象要素长时序持续的观测值。ERA5-Land是ECMWF ERA5气候再分析数据的陆地部分反演生产的。生产时将气候模式数据与气象观测站的监测数据结合起来,利用物理学定律形成一套全球完整的、连续的数据集。

数据来源为 CDS(Copernicus Climate Data Store),其数据已被重新格点化为0.1°×0.1°的常规经纬度格点数据。关于数据的具体描述,可查阅官方网站:https://cds.climate.copernicus.eu/cdsapp#!/home

1、数据介绍

AI Earth平台目前上线ERA5-Land的3类数据产品,分别是ERA5-Land hourly data、ERA5-Land monthly averaged data、ERA5-Land monthly averaged data by hour of day ,ERA5-land 数据产品覆盖全球陆地区域1950-2022年共50类气象要素(包括温度、降水、大气压、辐射、蒸散发等),空间分辨率为0.1° x 0.1° (~9 km),数据将持续进行更新。

640.png

 

2、数据检索

在数据产品列表下的气象数据中可以找到对应ERA5-Land 的3类数据产品。支持用户选择时间段进行数据检索。

640 (1).png

640 (2).png

 

3、开发者模式

可通过开发者模式调用ERA5-Land 的3类数据产品。如下为利用ERA5-Land monthly averaged data 数据进行平均气温的长时序气候态分析。

640 (3).png

上图为中国区域1991-2020年30年年均温空间分布

640 (4).png

上图为中国区域2022年年均温距平空间分布(Baseline 1991-2020年)

 

部分代码如下,仅供参考,欢迎登录平台体验。如有任何疑问,欢迎随时与AI Earth联系交流。


importaieaie.Authenticate()
aie.Initialize()
# 指定需要检索的区域region=aie.FeatureCollection('China_Province').geometry()
#1991-2020 共30年 逐月均温,并将 K 转为 °Cdataset=aie.ImageCollection('ERA5_LAND_MONTHLY').filterDate('1991-01-02', '2020-12-31')
print(dataset.size().getInfo())
# # size = dataset.size().getInfo()# size = 360# for i in range(size):#     id = dataset.toList(count=size).getInfo()[i]['id']#     print(id)Temp_Average_30y= (dataset.select(['temperature_2m']).reduce(aie.Reducer.mean())).subtract(aie.Image.constant(273.15)).clip(region)
# 计算2022年年均温Temp_2022=aie.ImageCollection('ERA5_LAND_MONTHLY').filterDate('2022-01-02', '2022-12-31').select(['temperature_2m'])
Temp_Average_2022=Temp_2022.reduce(aie.Reducer.mean()).subtract(aie.Image.constant(273.15)).clip(region)
Temp_Anomaly=Temp_Average_2022.subtract(Temp_Average_30y)
#可视化map=aie.Map(
center=region.getCenter(),
height=800,
zoom=3)
vis_temp= {
'min': -10,
'max': 20,
'palette': [
"#000080","#0000D9","#4000FF","#8000FF","#0080FF","#00FFFF",
"#00FF80","#80FF00","#DAFF00","#FFFF00","#FFF500","#FFDA00",
"#FFB000","#FFA400","#FF4F00","#FF2500","#FF0A00","#FF00FF",
    ]
}
vis_temp_anomaly= {
'min': -3,
'max': 3,
'palette': ['#0000D9','#ffffff','#FF0000']
}
map.addLayer(
Temp_Average_30y,
vis_temp,
'Temp_Average_30y(°C)',
bounds=dataset.getBounds()
)
map.addLayer(
Temp_Average_2022,
vis_temp,
'Temp_Average_2022(°C)',
bounds=dataset.getBounds()
)
map.addLayer(
Temp_Anomaly,
vis_temp_anomaly,
'Temp_Anomaly(°C)',
bounds=dataset.getBounds()
)
map##计算全国30年月度平均温#利用aie.Filter.calendarRange()函数筛选对应月份数据defget_month_data(mon,parameter):
dataset=aie.ImageCollection('ERA5_LAND_MONTHLY')\                  .filterDate('1991-01-02', '2020-12-31')\                  .filter(aie.Filter.calendarRange(mon, None,'month'))\                  .select([parameter])
returndatasetx_temp_series= []
y_temp_series= []
foriinrange(1,13):
temp_mean=get_month_data(i,'temperature_2m').reduce(aie.Reducer.mean()).subtract(aie.Image.constant(273.15)) 
temp_sta=temp_mean.reduceRegion(aie.Reducer.mean(), region, 10000)
x_temp_series.append(str(i).zfill(2) +'月')
y_temp_series.append(temp_sta.getInfo()['temperature_2m_mean'])
#绘制月度均温曲线图frombqplotimportpyplotaspltplt.figure(1, title='1991-2020年全国逐月均温统计')
plt.plot(x_temp_series, y_temp_series)
plt.show()
相关文章
|
8月前
|
人工智能 自然语言处理 API
Google Gemma 模型服务:开放的生成式 AI 模型服务
Google Gemma 模型服务:开放的生成式 AI 模型服务
236 4
|
8月前
|
人工智能 JSON 数据格式
GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大
GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大
212 0
|
8天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
112 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
7天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1275 23
|
3天前
|
人工智能 Cloud Native 大数据
云+AI开启算力新时代,共建开源开放生态赴未来 | 2024龙蜥大会主论坛
本次分享的主题是云 + AI开启算力新时代,共建开源开放生态赴未来 | 2024龙蜥大会主论坛,由阿里巴巴集团合伙人、阿里云基础设施事业部总经理蒋江伟分享。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
193 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
1月前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
204 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
30天前
|
人工智能 大数据 测试技术
自主和开放并举 探索下一代阿里云AI基础设施固件创新
12月13日,固件产业技术创新联盟产业峰会在杭州举行,阿里云主导的开源固件测试平台发布和PCIe Switch固件技术亮相,成为会议焦点。
|
4月前
|
人工智能 运维 安全
阿里云飞天企业版“智算升级”,为政企打造AI时代最开放的云
阿里云正式发布飞天智算—飞天企业版V3.18,为政企客户打造AI时代最开放的云。此次升级,飞天企业版将智算能力深度融入云平台,实现“一云多算”,满足政企客户对云平台“云+AI”协同发展需求,为AI技术大规模在政企领域应用做好准备。
245 11

热门文章

最新文章