人工智能与模式识别的意义(模式识别与图像处理课程作业)

简介: 人工智能与模式识别的意义(模式识别与图像处理课程作业)

c4596151cb104f08aadac8a9316ad9cf.jpg

一、 人工智能的意义


d4c7e13c88384db5bb97c45d987352e5.jpg


  1. 人工智能的发送对于我们社会的各个方面都具有重要的作用。人工智能可以推动我们社会的经济的发送,人工智能的技术可以被运用到医疗、教育、公共交通、制造业等诸多的领域中。人工智能的发展具有广阔的空间,人工智能可以推动着新兴业态的发展,实现经济发展的形态变革。人工智能可以为我们提供“虚拟劳动力”,在社会的各个部门可以实现高度自动化与机器化的生产,提高产品的质量,降低人工成本,从而实现社会生产力总体的大幅度跃升。人工智能的发展可以带动相关产业的兴起,从而开拓新的市场,创造新型工种和就业岗位,改变我国制造业长期以来大而不强的局面,实现制造业转型升级。
  2. 在人工智能时代,传统的城市治理被升级为以构建“智慧城市”为核心的新模式。“智慧城市”的建设需要互联网、物联网、大数据、云计算、人工智能等信息技术的叠加支撑,建成后将为城市发展中存在的诸多问题提供解决方案。
  3. 在前期规划中,人工智能可对智慧城市规划方案进行模拟和验证,对其产生的积极影响和消极后果进行全方位的评估,针对城市发展中存在的问题提出针对性的解决方案,大大降低城市规划的盲目性。人工智能可以提高城市治理行动与决策的速度,挖掘城市生活中产生的大数据,构建计算中心和“城市大脑”,以解决资源调度、交通拥堵、城市污染等问题;通过打造“智慧城市”、“智慧金融”、“智能驾驶”、“智慧医疗”、“智慧教育”等应用场景,提高政府办事效率,为城市居民提供更便捷舒适的生活。



ad7b4707079f488eb789e1d0614b9b79.jpg


二、 模式识别的意义


b4f33b4c10ac4bbe9c1b2a0946905fd9.jpg


模式识别可用于文字和语音识别、遥感和医学诊断等方面。

2.1、文字识别


汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我国得到普及的应用。汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

2.2、语音识别


语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。

2.3、指纹识别


我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。


2.4、遥感

遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。

2.5、医学诊断



dfe5566c4f7e4d4797e25abb78321672.jpg


在癌细胞检测、X射线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别已取得了成效。

语音模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。


在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。


1、语音识别技术

语音识别技术正逐步成为信息技术中人机接口(Human Computer Interface, HCI)的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。


2、生物认证技术

生物认证技术(Biometrics)本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。国际数据集团(IDG)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100亿美元的市场规模。


3、数字水印技术

90年代以来才在国际上开始发展起来的数字水印技术(Digital Watermarking)是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。

模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

image.jpeg

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在图像处理中的应用
【10月更文挑战第32天】本文将深入探讨人工智能(AI)如何在图像处理领域大放异彩,从基础的图像识别到复杂的场景解析,AI技术正逐步改变我们对视觉信息的理解和应用。文章将通过具体案例,揭示AI如何优化图像质量、实现风格迁移和进行内容识别,进而讨论这些技术背后的挑战与未来发展方向。
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能课程】计算机科学博士作业三
本文是关于计算机科学博士课程的第三次作业,主要介绍了图片攻击的概念、常见算法(如FGSM、IFGSM、MIFGSM等),并通过Python代码实现了对图像的攻击以及评估了这些攻击算法对模型性能的影响。
46 3
【人工智能课程】计算机科学博士作业三
|
3月前
|
人工智能 TensorFlow 算法框架/工具
【人工智能课程】计算机科学博士作业二
本文使用TensorFlow 1.x实现了一个手势识别任务,通过图像增强技术改进模型,将基准训练准确率从0.92提升到0.97,测试准确率从0.77提升到0.88,并提供了详细的代码实现过程。
28 3
【人工智能课程】计算机科学博士作业二
|
3月前
|
机器学习/深度学习 数据采集 人工智能
【人工智能课程】计算机科学博士作业一
本文是一份人工智能课程作业指南,详细描述了使用深度神经网络构建回归模型的任务,包括数据预处理、特征选择、模型构建、训练、评估和优化的全过程,并提供了相应的PyTorch代码实现。
18 2
【人工智能课程】计算机科学博士作业一
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】学习人工智能需要学习哪些课程,从入门到进阶到高级课程区分
基于人工智能的多学科特性和其广泛的应用领域,学习这一技术涉及从基础理论到实践应用的各个层面。入门阶段应重点掌握数学基础、编程语言学习以及数据结构和算法等。进阶阶段需要深入机器学习、深度学习以及自然语言处理等专题。高级课程则包括专业核心课程、认知心理学与神经科学基础以及计算机图形学等课程
110 1
|
机器学习/深度学习 人工智能 自然语言处理
谷歌发布一个免费的生成式人工智能课程
在过去几周,我们看到的都是AI将如何改变生活,无论是ChatGPT的文本生成,还是SD,Midjourney 的图像生成,这些AI的特点就是都是生成式的AI。而几天前,谷歌推出了一个生成式人工智能学习课程,课程涵盖了生成式人工智能入门、大型语言模型、图像生成等主题。
303 0
|
机器学习/深度学习 人工智能 自然语言处理
跟着阿里训练营视频课程学习人工智能技术遇到的模型网络概念问题
参加人像卡通画训练营视频课程记录的一些概念介绍内容
150 0
|
机器学习/深度学习 人工智能 并行计算
机器学习/人工智能 大作业:手写数字识别系统
机器学习/人工智能 大作业:手写数字识别系统
970 0
机器学习/人工智能 大作业:手写数字识别系统
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
深度探索人工智能在医疗影像诊断中的应用与挑战####
本文深入剖析了人工智能(AI)技术,特别是深度学习算法在医疗影像诊断领域的创新应用,探讨其如何重塑传统诊断流程,提升诊断效率与准确性。同时,文章也客观分析了当前AI医疗影像面临的主要挑战,包括数据隐私、模型解释性及临床整合难题,并展望了未来发展趋势。 ####
|
1天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
【10月更文挑战第34天】人工智能(AI)技术正在改变医疗行业的面貌,为诊断过程带来前所未有的效率和准确性。通过深度学习、神经网络等技术,AI能够分析大量数据,辅助医生做出更快速、更准确的诊断决策。然而,AI在医疗领域的应用也面临着数据隐私、算法透明度和医疗责任等一系列挑战。本文将探讨AI在医疗诊断中的具体应用案例,分析其面临的挑战,并提供对未来发展方向的思考。
下一篇
无影云桌面