一、什么是内积
内积一般指点积。在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。
二、案例分析
在上面的学习中,我们已经初步了解了二分类的问题,在最简单的二分类问题中,我们需要找到那条分界线,但是不是像我们之前回归那样,找直线的斜率和截距,而是要找向量。分类用图形来解释更容易理解,所以把它想象为有大小和方向的、 带箭头的向量比较好。
我们所要画的直线是使权重向量成为法线向量的直线。设权重向量为 w,那么那条直线的表达式就是这样的。
我们来慢慢解释上面这段话,权重向量就是我们想要知道的未知参数,w 是权重一词的英 文——weight 的首字母。上次学习回归时,我们为了求未知参数θ 做了很多事情,而 w 和 θ 是一样的。所以它们都是参数,只是叫法不同。上述的表达式就是两个向量的内积,我们也可以写成这样:
我们依然为图像的横纵分类案例举例,图像有宽和高的二维情况, 所以 n = 2 就可以了,表达式就可以写成:
而法线是与某条直线相垂直的向量。我们设权重向量为w = (1, 1),那么刚才的内积表达式会变成什么样呢?只需要代入(1,1)进行计算就可以了
移项变形之后,表达式变成 x2 = −x1 了。这就是斜率为−1 的直线
在这张图上再画上刚才确定的权重向量 w = (1, 1) 就更容易理解了
权重向量 w 和这条直线是垂直的!这就是“使权重向量成为法线向量的直线”在图形上的解释。高中时我们还学过,用向量之间的夹角 θ和 cos 计算内积的表达式
这是内积的另一个表达式。用这个表达式也没有问题。表达式中 的 |w| 和 |x| 是向量的长,因此必定是正数。所以要想使内积为0,只能使 cos θ = 0。要想使 cos θ = 0,也就意味着 θ = 90◦ 或θ = 270◦ 。这两种情况也是直角。
最终找到与我画的直线成直角的权重向量就完成任务了。
当然,一开始并不存在你画的那种直线,而是要通过训练找到权重向量,然后才能得到与这个向量垂直的直线,最后根据这条直线就可以对数据进行分类了。