机器学习中的数学原理——二分类问题

简介: 机器学习中的数学原理——二分类问题

一、什么是二分类

二分类问题就是简单的“是否”、“有无”问题,分类问题是机器学习中非常重要的一个课题。现实生活中有很多实际的二分类场景,如对于借贷问题,我们会根据某个人的收入、存款、职业、年龄等因素进行分析,判断是否进行借贷;对于一封邮件,根据邮件内容判断该邮件是否属于垃圾邮件

二、案例分析

我们之前的学习都是围绕回归来进行的,今天我们学习一个全新的概念,分类问题。我们从最简的二分类开始学习,简单来说就是根据目标的某些特性将其分为两类。我们以图像分类举例,我们不去考虑图像本身的内容,只根据尺寸把它分类为纵向图像和横向图像 :

那么上面左侧的图片就是纵向的图片,右侧的图片就是横向的图片。我们以表格的形式呈现:

x 轴图像的宽y 轴图像的高,那么把上面的数据展现在图上就是下面这样的,其中白色的点是纵向图像,黑色的点是横向图像:

以此类推,我们可以在表上和图上添加更多的数据:

现在要做的事就是只用一条线将图中白色的点和黑色的点分开:

我们可以这样画,那么我们二分类的任务就完成了,是不是很简单,在直线上方出现的点,我们都认为是纵向,黑色都认为是横向,达到了分类的目的

三、总结

上述例子,我们以图像横纵的分类详细阐述了二分类。二分类的目的就是找到这条线,只要找到这条线,就可以根据点在线的哪一边来判断图像是横向还是纵向的了。

当然,这只是一种很理想的状态,真实的情况比这要复杂的多,分割函数可能会很复杂,这是我们之后要研究的问题,在这里就不进行阐述。


相关文章
|
1月前
|
机器学习/深度学习 资源调度 算法
机器学习领域必知数学符号与概念(一)
本文介绍了一些数学符号以及这些符号的含义。
169 65
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
104 4
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
74 0
|
4月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
4月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
4月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
4月前
|
机器学习/深度学习 存储 自然语言处理
【机器学习】基于逻辑回归的分类预测
【机器学习】基于逻辑回归的分类预测
|
4月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
4月前
|
机器学习/深度学习 传感器 算法
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
|
4月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
95 0