机器学习中的数学原理——多重回归算法

简介: 机器学习中的数学原理——多重回归算法

一、什么是多重回归

多重线性回归 (multiple linear regression) 是简单直线回归的推广,研究一个因变量与多个自变量之间的数量依存关系。多重线性回归用回归方程描述一个因变量与多个自变量的依存关系,简称 多重回归

二、案例分析

还记得我们之前研究最小二乘法的时候,是根据广告费来预测点击量的,广告费作为唯一变量。无论我们之后研究的梯度下降法还是多项式回归,都是建立在广告费作为唯一变量的前提下的。然而,实际情况中点击量是受到广告费在内的多个因素影响的。也就是说,以点击量作为因变量自变量会有多个。我们将原来的案例扩展一下,现在,决定点击量的除了广告费之外,还有广告的 展示位置和广告版面的大小等多个要素。设 广告费为 x1、广告栏的宽为 x2、广告栏的高为 x3,那么 fθ 可以 表示如下:

现在的问题就变成了怎么去求,按照我们之前的做法,只需要分别求出目标函数对偏微分,然后更新参数就可以了。但是在求偏微分之前,我们可以先试着简化表达式的写法。

想象一下,刚才我们说有 x1、x2、x3 共 3 个变量,下面我们把它推广到有 n个变量的情况。这时候 fθ 会变成什么样子呢?

每次都像这样写 n 个 x 岂不是很麻烦?所以我们现在还可以把参数 θ 和变量 x 看作向量

这里的1就相当于,这样的操作好处就在于保证了θ和 x 的维度相同,处理起来会容易很多。把 θ 转置之后,就可以计算一下它与 x 相乘的结果。

所以简化之后的表达式就变为:

接下来我们就使用 fθ(x)来求参数更新表达式吧,方法与之前一样。设 u = E(θ)、v = fθ(x)的部分是一样的。为了一般化,我们可以 考虑对第 j 个元素 θj 偏微分的表达式:

然后只需要求 v 对 θj 的微分就好了:

那么就可以得到第 j 个参数的更新表达式就是这样的:

这样我们就不用每个 θ 都写更新表达式,它们可以汇总为上面这样的一个表达式。像这样包含了多个变量的回归称为多重回归。可以基于一般化的思路来思考问题正是数学的优点。

三、总结

这一节主要学习了多重回归算法,有原来的一个自变量转化成了多个自变量,考虑多个自变量因变量的影响,从而确定最优参数。同时,我们还学习了简化表达式,将原来繁琐的多个表达式整理成一个通用的表达式,用到了向量的知识,注意和x相乘的时候需要进行转置,这一块在线性代数上面有提及。


相关文章
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
24天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
50 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
5天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
29天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
25天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
28 0
|
15天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。