【ML】什么是判别模型和生成模型

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 什么是判别模型和生成模型,请阅读下文
1. 判别模型和生成模型所属范畴

在这里插入图片描述

2. 直观理解

【判别模型】:要确定一张图片是猫还是狗,用判别模型的方法就是根据数据集X训练模型,然后把新的图片输入到模型中,模型给出这个图片是每个类别的概率。

【生成模型】:生成模型是对原始数据集X和其标签Y建模,生成其联合概率。然后将新的图片放入是否是猫的模型中,看概率是多少;然后将新的图片放入是否是狗的模型中,看概率是多少。

联合概率:联合概率是指在多元的概率分布中多个随机变量分别满足各自条件的概率。假设X和Y都服从正态分布,那么P{X<4,Y<0}就是一个联合概率,表示X<4,Y<0两个条件同时成立的概率。表示两个事件共同发生的概率。A与B的联合概率表示为 P(AB) 或者P(A,B),或者P(A∩B)。)

3. 判别模型

【判别模型】:由数据直接学习决策函数f(x)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。
【基本思想】是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。
【典型的判别模型】包括KNN,感知机,决策树,支持向量机等。

常见的判别模型:KNN,SVM,神经网络,决策树。

4. 生成模型

【生成模型】:由数据学习==联合概率密度分布P(X,Y)==,然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。
【基本思想】是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类。

常见的模型有:高斯混合模型,朴素贝叶斯模型。

5.生成模型和判别模型的联系

由生成模型可以得到判别模型,但由判别模型得不到生成模型。

6. 生成模型和判别模型的优缺点

在监督学习中,两种方法各有优缺点,适合于不同条件的学习问题

生成模型的特点:上面说到,生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布P(Y|X),而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。

判别模型的特点:判别方法直接学习的是决策函数Y=f(X)或者条件概率分布P(Y|X)。不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。直接面对预测,往往学习的准确率更高。由于直接学习P(Y|X)或P(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。

参考:

https://www.cnblogs.com/itmorn/p/13199148.html

https://mp.weixin.qq.com/s/l5f4jpqK120TpWGQbP1dBg

https://blog.csdn.net/zouxy09/article/details/8195017

相关文章
|
机器学习/深度学习 存储 Web App开发
ML 模型再训练无法解决的问题(mona)
信任人工智能系统并不容易。考虑到机器学习模型可能失败的各种边缘情况,以及对其预测背后的流程缺乏可见性,以及难以将其输出与下游业务结果相关联,难怪企业领导者经常对人工智能持有一些怀疑态度。
|
机器学习/深度学习 存储 数据采集
使用ML 和 DNN 建模的技巧总结
使用ML 和 DNN 建模的技巧总结
170 0
使用ML 和 DNN 建模的技巧总结
|
机器学习/深度学习 PyTorch 算法框架/工具
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
158 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
657 0
|
机器学习/深度学习 测试技术
LLM-Blender:大语言模型也可以进行集成学习
最近在看arxiv的时候发现了一个有意思的框架:LLM-Blender,它可以使用Ensemble 的方法来对大语言模型进行集成。
348 0
|
机器学习/深度学习 算法 PyTorch
使用Pytorch实现对比学习SimCLR 进行自监督预训练
SimCLR(Simple Framework for Contrastive Learning of Representations)是一种学习图像表示的自监督技术。 与传统的监督学习方法不同,SimCLR 不依赖标记数据来学习有用的表示。 它利用对比学习框架来学习一组有用的特征,这些特征可以从未标记的图像中捕获高级语义信息。
1192 1
|
机器学习/深度学习 算法 Python
|
机器学习/深度学习 人工智能 计算机视觉
超越ImageNet预训练,Meta AI提出SplitMask,小数据集也能自监督预训练
超越ImageNet预训练,Meta AI提出SplitMask,小数据集也能自监督预训练
157 0
|
机器学习/深度学习 算法
ML/DL:关于机器学习、深度学习算法模型的选择
ML/DL:关于机器学习、深度学习算法模型的选择
ML/DL:关于机器学习、深度学习算法模型的选择
|
机器学习/深度学习 数据采集 人工智能
15大领域、127个任务,这里有最全的机器学习SOTA模型
机器之心又一产品「SOTA模型」今天上线啦!机器学习 SOTA 研究一网打尽。
1283 0
15大领域、127个任务,这里有最全的机器学习SOTA模型

热门文章

最新文章